Signed Selmer groups of supersingular elliptic curves over weakly ramified base fields

jt w/ Katharina Müller [arXiv:2407.08430]

Ben Forrás

Oberseminar Arithmetische und Algebraische Geometrie München

15 January 2025

Universität München

Link to slides: https://bforras.eu/docs/OberseminarWS2425.pdf

Global picture

Standing assumptions:

$$p \ge 5$$
 prime E/F elliptic curve

 F_{∞}/F — cyclotomic \mathbb{Z}_p -extension, i.e. the unique quotient extension of $F\mathbb{Q}(\mu_{p^{\infty}})/F$ with $\Gamma:=\operatorname{Gal}(F_{\infty}/F)\simeq\mathbb{Z}_p$

Main results (rough form)

Kida formula

 F/\mathbb{Q} — finite, K/L/F — finite Galois p-extensions Under suitable assumptions:

$$\lambda \left(X^{\vec{s}}(E/K_{\infty}) \right) = [K_{\infty} : L_{\infty}] \cdot \lambda \left(X^{\vec{s}}(E/L_{\infty}) \right) + \text{(fudge factor)}$$

$$\mu \left(X^{\vec{s}}(E/K_{\infty}) \right) = [K_{\infty} : L_{\infty}] \cdot \mu \left(X^{\vec{s}}(E/L_{\infty}) \right)$$

Integrality of characteristic elements

Under suitable assumptions: if ξ is a characteristic element for $X^{\vec{s}}(E/K_{\infty})$, then for every maximal order $\mathfrak{M} \subset \mathcal{Q}(\mathcal{G}) := \operatorname{Quot}(\Lambda(\mathcal{G}))$:

$$\xi \in \mathsf{im}\left(\mathfrak{M}\cap\mathcal{Q}(\mathcal{G})^{ imes}
ightarrow \mathcal{K}_1(\mathcal{Q}(\mathcal{G}))
ight)$$

p-primary Selmer groups

Assumptions:

 F/\mathbb{Q} — finite extension

 Σ — finite set of places of F containing p-adic, infinite, and bad places

E/F — elliptic curve with good ordinary reduction at primes above p:

i.e. $\forall v \mid p$: \widetilde{E} is an elliptic curve, $a_v := 1 + p - \#\widetilde{E}\left(\mathcal{O}_{\mathcal{F}_v}/v\right) \not\equiv 0$ (p).

$$\begin{split} &\operatorname{Sel}_{p^{\infty}}(E/F) := \ker \left(H^{1}(F, E[p^{\infty}]) \xrightarrow{\bigoplus \operatorname{res}_{v}} \bigoplus_{v \in \Sigma} H^{1}(F_{v}, E) \right) = \\ &\ker \left(H^{1}(F, E[p^{\infty}]) \xrightarrow{\bigoplus \operatorname{res}_{v}} \bigoplus_{\substack{v \in \Sigma \\ v \nmid p}} H^{1}(F_{v}, E[p^{\infty}]) \oplus \bigoplus_{\substack{v \in \Sigma \\ v \mid p}} \frac{H^{1}(F_{v}, E[p^{\infty}])}{E(F_{v}) \otimes \mathbb{Q}_{p}/\mathbb{Z}_{p}} \right) \\ &=: \ker \left(H^{1}(F, E[p^{\infty}]) \xrightarrow{\bigoplus \operatorname{res}_{v}} \bigoplus_{v \in \Sigma} J_{v}(E/F_{v}) \right) \end{split}$$

Iwasawa theory

 F_{∞}/F — cyclotomic \mathbb{Z}_p -extension

 F_n/F — the unique degree p^n extension inside F_{∞}

 $\Lambda \coloneqq \mathbb{Z}_p\llbracket \Gamma \rrbracket \simeq \mathbb{Z}_p\llbracket [T]
brace$ Iwasawa algebra

 $\operatorname{Sel}(E/F_{\infty}) := \varinjlim_{n} \operatorname{Sel}_{p^{\infty}}(E/F_{n})$ discrete Λ -module

 $X(E/F_{\infty}) := \mathsf{Hom}(\mathsf{Sel}(E/F_{\infty}), \mathbb{Q}_p/\mathbb{Z}_p) \text{ compact } \Lambda\text{-module}$

There is a homomorphism with finite kernel and cokernel:

$$X(E/F_{\infty}) \to \Lambda^{\oplus r} \oplus \bigoplus_{i} \Lambda/f_{i}(T)\Lambda \oplus \bigoplus_{j} \Lambda/p^{m_{j}}\Lambda$$

where $f_i(T) \in \mathbb{Z}_p[T]$ are distinguished polynomials.

$$\lambda(X(E/F_{\infty})) := \sum_{i} \deg f_{i}$$

$$\mu(X(E/F_{\infty})) := \sum_{j} m_{j}$$

$$\theta(X(E/F_{\infty})) := \max_{i} m_{i}$$

We will mostly assume $\theta \leq 1$.

±-Selmer groups

From now on: p-adic places have good but not necessarily ordinary reduction, i.e. $\forall v \mid p$: \widetilde{E} is still an elliptic curve, but we allow $p \mid a_v \rightsquigarrow$ supersingular places

Problem: local condition in $Sel_{p^{\infty}}$ is vacuous at supersingular places, and $Sel_{p^{\infty}}$ fails to be Λ -cotorsion!

Kobayashi (2000): new local conditions ($F = \mathbb{Q}$)

For
$$v \mid p$$
 supersingular and $n \ge 0$, define $\widehat{E}^{\pm}(F_{n,v}) := \left\{ P \in E(F_{n,v}) : \forall 0 \le m < n, m \text{ is } \frac{\text{even for } +}{\text{odd for } -} : \text{Tr}_{F_{n,v}/F_{m+1,v}}(P) \in E(F_{m,v}) \right\}$

Fix signs at supersingular places, i.e. choose $\vec{s} \in \{\pm\}^{\Sigma_p^{\rm ss}}$ (consistently)

Sel^{$$\vec{s}$$} $(E/F_n) := \ker \left(H^1(F_n, E[p^\infty]) \to \bigoplus_{\substack{\nu \mid p \\ \nu \in \Sigma_p^{\rm ss}}} \frac{H^1(F_{n,\nu}, E[p^\infty])}{\widehat{E}^{s_{\nu}}(F_{n,\nu}) \otimes \mathbb{Q}_p/\mathbb{Z}_p} \oplus (\cdots) \right)$

$$\bigvee_{v \in \widetilde{\Sigma}_p^{ss}} \int \operatorname{Sel}^{\vec{s}}(E/F_{\infty}) := \varinjlim_{n} \operatorname{Sel}^{\vec{s}}(E/F_{n}), \quad X^{\vec{s}}(E/F_{\infty}) := \operatorname{Hom}\left(\operatorname{Sel}^{\vec{s}}(E/F_{\infty}), \mathbb{Q}_p/\mathbb{Z}_p\right)$$

Local picture

Properties of \pm -Selmer groups: unramified case

 \mathcal{K} — localisation of F at a p-adic supersingular place

Assumptions: \mathcal{K}/\mathbb{Q}_p finite unramified, $\mathcal{K}_{\infty}/\mathbb{Q}_p$ abelian due to Kobayashi ($\mathcal{K}=\mathbb{Q}_p$) and B.D.Kim (generalisation)

Lubin–Tate theory $\Rightarrow \widehat{E}(\mathcal{K}_n)$ is *p*-torsion free $\forall n$

Lubin–Tate theory + Honda theory \rightsquigarrow system of \pm -norm coherent points

$$0 \le i < [\mathcal{K}: \mathbb{Q}_p]: \quad c_{n,i} \in \widehat{E}(\mathcal{K}_n) \text{ generators}, \quad \mathsf{Tr}_{\mathcal{K}_n/\mathcal{K}_{n-1}}(c_{n,i}) = -c_{n-2,i}$$

Consequences:

- $ightharpoonup \widehat{E}(\mathcal{K}_n)$ is cohomologically trivial $\forall n$
- ▶ short exact sequence: $0 \to \widehat{E}(\mathcal{K}) \to \widehat{E}^+(\mathcal{K}) \oplus \widehat{E}^-(\mathcal{K}) \to \widehat{E}(\mathcal{K}_{\infty}) \to 0$
- **computing cohomology** of $\widehat{E}^{\pm}(\mathcal{K}_{\infty}) \otimes \mathbb{Q}_p/\mathbb{Z}_p$ and $\frac{H^1(\mathcal{K}_{\infty}, \mathcal{E}[p^{\infty}])}{\widehat{F}^{\pm}(\mathcal{K}_{\infty}) \otimes \mathbb{Q}_p/\mathbb{Z}_p}$

Furthermore:

- ightharpoonup existence of \pm -Coleman maps $\operatorname{Col}^{\pm}: \varinjlim H^1(\mathcal{K}_n, T_p E) \to \Lambda$
- control theorem for ±-Selmer groups
- w/o Assumptions: no system of norm coherent points! (that we know of) $_{9/18}$

Cohomology of signed Selmer groups I

Assumption 1: $p^2 - 1 \nmid e(\mathcal{K}/\mathbb{Q}_p)$.

 $\Rightarrow \widehat{E}(\mathcal{K}_n)$ is p-torsion free $\forall n$ (similar proof as in unramified case)

Assumption 2: \mathcal{K}/\mathbb{Q}_p weakly ramified and $\mathbb{Q}_{p,\infty}\cap\mathcal{K}=\mathbb{Q}_p$

Weakly ramified: $\operatorname{\mathsf{Gal}}(\mathcal{K}/\mathbb{Q}_p) \supseteq \mathsf{G}_0 \supseteq \mathsf{G}_1 \supseteq \mathsf{G}_2 = 1$

Assumption $2\Rightarrow \mathsf{Gal}(\mathcal{K}_{\infty}/\mathbb{Q}_p)\simeq \Gamma\times \mathsf{Gal}(\mathcal{K}/\mathbb{Q}_p)$

Assumption $2 \Rightarrow \widehat{E}(\mathcal{K}_n)$ cohomologically trivial $\forall n$ proof uses Ellerbrock–Nickel ('18)

Goal: compute cohomology of $\widehat{E}^{\pm}(\mathcal{K}_{\infty}) \otimes \mathbb{Q}_p/\mathbb{Z}_p$ and $\frac{H^1(\mathcal{K}_{\infty}, \mathcal{E}[p^{\infty}])}{\widehat{E}^{\pm}(\mathcal{K}_{\infty}) \otimes \mathbb{Q}_p/\mathbb{Z}_p}$ Avoiding Kobayashi's exact sequence via \pm -lwasawa cohomology:

 $H^{\pm}(\mathcal{K}_n, T_p E)$ — orthogonal complement of $\widehat{E}^{\pm}(\mathcal{K}_{\infty}) \otimes \mathbb{Q}_p/\mathbb{Z}_p$ under the Tate pairing $H^1(\mathcal{K}_n, E[p^{\infty}]) \times H^1(\mathcal{K}_n, T_p E) \to \mathbb{Q}_p/\mathbb{Z}_p$

 $H^{\pm}_{lw}(\mathcal{K}, T_p E) := \varprojlim_n H^{\pm}(\mathcal{K}_n, T_p E) - \pm \text{-lwasawa cohomology}$

Proposition (F.-Müller '24)

For $G \leq \operatorname{Gal}(\mathcal{K}/\mathbb{Q}_p)$ cyclic of order p: $H^{\pm}_{lw}(\mathcal{K}, T_p E)$ is free over $\Lambda(\Gamma \times G)$.

Proposition (Lim unramified, F.-Müller weakly ramified)

For all $G \leq \operatorname{Gal}(\mathcal{K}/\mathbb{Q}_p)$:

$$H^{i}\left(G, \frac{H^{1}(\mathcal{K}_{\infty}, E[p^{\infty}])}{\widehat{E}^{\pm}(\mathcal{K}_{\infty}) \otimes \mathbb{Q}_{p}/\mathbb{Z}_{p}}\right) = \begin{cases} \frac{H^{1}(\mathcal{K}_{\infty}^{G}, E[p^{\infty}])}{\widehat{E}^{\pm}(\mathcal{K}_{\infty}^{G}) \otimes \mathbb{Q}_{p}/\mathbb{Z}_{p}} & i = 0\\ 0 & i > 0 \end{cases}$$

Sufficient to treat the case
$$G \simeq C_{\ell}$$
, ℓ prime. If $\ell \neq p$: obvious. Let $\ell = p$. $H^{\pm}_{lw}(\mathcal{K}, T_p E)$ is free over $\Lambda(\Gamma \times G) \Rightarrow \forall i > 0$: $H^i(G, H^{\pm}_{lw}(\mathcal{K}, T_p E)) = 0$

Since $H^{\pm}_{lw}(\mathcal{K}, T_p E)$ is Tate dual to $\frac{H^1(\mathcal{K}_{\infty}, E[p^{\infty}])}{\widehat{F}^{\pm}(\mathcal{K}_{-1})\otimes \mathbb{Q}_{-}/\mathbb{Z}_{-}} \Rightarrow$ claim for i > 0

For i = 0: cyclicity of $G \Rightarrow \widehat{H}^0 = H^2 = 0$, so

$$\left(\frac{H^{1}(\mathcal{K}_{\infty}, E[p^{\infty}])}{\widehat{E}^{\pm}(\mathcal{K}_{\infty}) \otimes \mathbb{Q}_{p}/\mathbb{Z}_{p}}\right)_{G} = \operatorname{Tr}_{G}\left(\left(\frac{H^{1}(\mathcal{K}_{\infty}, E[p^{\infty}])}{\widehat{E}^{\pm}(\mathcal{K}_{\infty}) \otimes \mathbb{Q}_{p}/\mathbb{Z}_{p}}\right)\right) \\
\stackrel{\subseteq}{=} \frac{H^{1}(\mathcal{K}_{\infty}^{G}, E[p^{\infty}])}{\widehat{F}^{\pm}(\mathcal{K}^{G}) \otimes \mathbb{Q}_{p}/\mathbb{Z}_{p}}$$

Consequences for $Sel^{\vec{s}}$ and $X^{\vec{s}}$

In general, $X^{\vec{s}}(E/K_{\infty})$ is not known to be $\Lambda = \Lambda(\Gamma)$ -torsion (even if there are no supersingular places, conjectured by Mazur '72) If $X^{\vec{s}}(E/K_{\infty})$ is Λ -torsion:

$$\Leftrightarrow H^2(G_{\Sigma}(K_{\infty}), E[p^{\infty}]) = 0$$
 and there is a short exact sequence

$$\mathsf{Sel}^{\vec{s}}(E/K_{\infty}) \hookrightarrow H^1(G_{\Sigma}(K_{\infty}), E[p^{\infty}]) \twoheadrightarrow \bigoplus_{w \in \Sigma(K_{\infty})} J_w(E/K_{\infty})$$

where $G_{\Sigma}(K_{\infty})$ is the Galois group of the maximal Σ -ramified extension

- $\Rightarrow H^i(G,\mathsf{Sel}^{\vec{s}}(E/K_\infty))$ is finite for all $G \leq \mathsf{Gal}(K_\infty/F_\infty)$
- $\Rightarrow X^{\vec{s}}(E/K_{\infty})$ has no finite nonzero Λ -submodules

Proof buzzwords: Cassels—Poitou—Tate sequence, Greenberg resp. Hachimori—Matsuno at non-p-adic resp. ordinary primes, Hochschild—Serre spectral sequence.

Assume $X^{\vec{s}}(E/K_{\infty})$ is Λ -torsion from now on.

Non-primitive Selmer groups

Let $\Sigma' \subset \Sigma$ be a set of non-p-adic places.

$$\operatorname{Sel}_{\Sigma'}^{\vec{s}}(E/L_n) := \ker \left(H^1(G_{\Sigma}(L_n), E[p^{\infty}]) \to \bigoplus_{w \in (\Sigma - \Sigma')(L_n)} J_w(E/L_n) \right)$$

$$\operatorname{Sel}_{\Sigma'}^{\vec{s}}(E/L_{\infty}) := \varinjlim_{n} \operatorname{Sel}_{\Sigma'}^{\vec{s}}(E/L_n)$$

$$0 \to \operatorname{Sel}^{\vec{s}}(E/K_{\infty}) \to \operatorname{Sel}_{\Sigma'}^{\vec{s}}(E/K_{\infty}) \to \bigoplus_{m \in (\Sigma - \Sigma')(L_n)} H^1(K_{\infty, w}, E[p^{\infty}]) \to 0$$

Inherits properties: same θ , $H^i(G, Sel^{\vec{s}}_{\Sigma'}(E/K_\infty))$ finite, no finite submod. Assume Σ' contains all places $v \nmid p$, $v \in \Sigma$ s.t. $p \mid f_v(K/F)$ inertia degree

 $w \in \Sigma'(K_{\infty})$

Theorem (Lim unramified, F.-Müller weakly ramified)

If $X^{\vec{s}}(E/K_{\infty})$ is Λ -torsion and $\theta(X^{\vec{s}}(E/K_{\infty})) \leq 1$, then $X_{\Sigma'}^{\vec{s}}(E/K_{\infty}) / X_{\Sigma'}^{\vec{s}}(E/K_{\infty})[p]$ is quasi-projective over $\mathbb{Z}_p[\mathsf{Gal}(K_{\infty}/F_{\infty})]$.

Strictly quasi-projective: $0 \to \text{finite} \to Y \to \text{projective} \to \text{finite} \to 0$ Quasi-projective: $0 \to \text{sqp} \to \text{sqp} \to Y \to 0$

Ordinary Kida formula

Analogue of Riemann–Hurwitz formula, which relates Euler characteristics in a ramified covering of surfaces.

Theorem (Hachimori-Matsuno '98, Hachimori-Sharifi '05)

Let K/L be a finite Galois extension of p-power degree. Suppose that $X(E/K_{\infty})$ is Λ -torsion with $\theta(X(E/K_{\infty})) \leq 1$. Then $X(E/L_{\infty})$ is also Λ -torsion, and we have:

$$\begin{split} \lambda\left(X(E/\mathcal{K}_{\infty})\right) &= \left[\mathcal{K}_{\infty} : \mathcal{L}_{\infty}\right] \cdot \lambda\left(X(E/\mathcal{L}_{\infty})\right) + \\ &+ \sum_{w \in P_{\mathsf{spm}}} (e_w - 1) + 2\sum_{w \in P_{\mathsf{good}}} (e_w - 1) \\ \mu\left(X(E/\mathcal{K}_{\infty})\right) &= \left[\mathcal{K}_{\infty} : \mathcal{L}_{\infty}\right] \cdot \mu\left(X(E/\mathcal{L}_{\infty})\right) \end{split}$$

 P_{spm} , $P_{\text{good}} \subseteq \Sigma'$ — sets of places $w \nmid p$ of L_{∞} above Σ , with E having split multiplicative resp. good reduction with $E(L_{\infty,w}) \neq 0$, and the inertia degree of the underlying primes in K/L being divisible by p e_w — ramification index of w in K_{∞}/L_{∞}

±-Kida formulæ

 F/\mathbb{Q} — finite, K/L/F — finite Galois p-extensions

Theorem (M.F.Lim '21)

There is a Kida formula $Sel^{\vec{s}}(E/K_{\infty}) \iff Sel^{\vec{s}}(E/L_{\infty})$ when:

- ► E/F has good reduction at p-adic places, at least one supersingular
- $ightharpoonup \forall v \mid p$ supersingular place of F:
 - $ightharpoonup F_v = \mathbb{Q}_p$
 - ► v is unramified in K/F

Theorem (F.-Müller '24)

There is a Kida formula $Sel^{\vec{s}}(E/K_{\infty}) \iff Sel^{\vec{s}}(E/L_{\infty})$ when:

- ightharpoonup E/F has good reduction at p-adic places, at least one supersingular
- $ightharpoonup \forall v \mid p$ supersingular place of F:
 - ightharpoonup p splits completely in F/\mathbb{Q}
 - $ightharpoonup p^2 1 \mid e_{K/F}(v)$
 - $ightharpoonup K_v \subseteq \mathcal{K}\mathbb{Q}_{p,\infty}$ for some \mathcal{K}/\mathbb{Q}_p weakly ramified

Kida formula: idea of proof (Hachimori-Sharifi) $\Sigma' := \{ v \in \Sigma : v \nmid p, p \mid f_v(K/F) \}$

Wlog $G = Gal(K_{\infty}/L_{\infty})$ cyclic of order p

$$I/L_{\infty}) \hookrightarrow H^1(G_{\Sigma}(L_{\infty}), E[p^{\infty}])$$

$$\sim |\operatorname{res}|^{L}$$

finite
$$\mu((X^{ec{s}}_{\Sigma'}(E/K_{\infty}))^G) = \mu(X^{ec{s}}_{\Sigma'}(E/L_{\infty}))$$

 $\frac{\mu((X_{\Sigma'}^{\vec{s}}(E/K_{\infty}))^G) = \mu(X_{\Sigma'}^{\vec{s}}(E/L_{\infty}))}{\forall i > 0 : \#H^i(G, \operatorname{Sel}_{\Sigma'}^{\vec{s}}(E/K_{\infty})) < \infty} \Rightarrow \mu(X_{\Sigma'}^{\vec{s}}(E/K_{\infty})) = p\mu(X_{\Sigma'}^{\vec{s}}(E/L_{\infty}))$

Also:
$$\lambda(X_{\Sigma'}^{\vec{s}}(E/K_{\infty})) = p \cdot \lambda(X_{\Sigma'}^{\vec{s}}(E/L_{\infty}))$$

Putting back the primes in Σ' : corank computations due to Greenberg and Hachimori-Matsuno

Characteristic elements

 $\mathcal{Q}(\mathcal{G})$ — total ring of quotients of $\Lambda(\mathcal{G})$, i.e. localise at all non-zero-divisors Y — finitely generated $\Lambda(\mathcal{G})$ -module, torsion over $\Lambda = \Lambda(\Gamma)$, with a free $\Lambda(\mathcal{G})$ -resolution of length 1: $0 \to \Lambda(\mathcal{G})^m \xrightarrow{\alpha} \Lambda(\mathcal{G})^m \to Y \to 0$

[Y] — class of Y in $K_0(\Lambda(\mathcal{G}), \mathcal{Q}(\mathcal{G}))$: [Y] := $[(\Lambda(\mathcal{G})^m, \alpha, \Lambda(\mathcal{G})^m)]$ ξ_Y — characteristic element: $\xi_Y \in K_1(\mathcal{Q}(\mathcal{G}))$ s.t. $\partial(\xi_Y) = [Y]$, e.g. $[\alpha]$

Nota bene: ∂ is surjective (Witte)

Theorem (Greenberg, '11)

Y — fin.gen'd $\Lambda(\mathcal{G})$ -mod., torsion/ $\Lambda = \Lambda(\Gamma)$, no nonzero finite Λ -submod.

Then: Y admits a free resolution of length 1 of $\Lambda(\mathcal{G})$ -modules if $\forall \mathcal{H} < \mathcal{G}: H^1(\mathcal{H}, Y^{\vee}) = H^2(\mathcal{H}, Y^{\vee}) = 0$

Greenberg's criterion is applicable to $X_{\Sigma'}^{\vec{s}}(E/K_{\infty})$ if Σ' contains all places $v \nmid p$, $v \in \Sigma$ s.t. $p \mid f_v(K/F)$

- $\triangleright X^{\vec{s}}(E/K_{\infty})$ is \land -torsion
- every ordinary *p*-adic place $v \in \Sigma_p^{\text{ord}}$ is
 - very ordinary p-adic place $v \in \mathbb{Z}_p$
 - either non-anomalous: if $w \mid v$ for w a place of K, then $p \nmid \# \tilde{E}(\overline{K_w})$
 - or ramifies tamely in K/F

Integrality of characteristic elements

Greenberg's criterion $\Rightarrow X_{\Sigma'}^{\vec{s}}(E/K_{\infty})$ has a free resolution of length 1

Theorem (F, '23)

Y — fin.gen'd $\Lambda(\mathcal{G})$ -module with a free resolution of length 1 Then: $orall \mathfrak{M} \subset \mathcal{Q}(\mathcal{G})$ maximal orders: $\xi_Y \in \operatorname{im} \left(\mathfrak{M} \cap \mathcal{Q}(\mathcal{G})^{ imes}
ightarrow \mathcal{K}_1(\mathcal{Q}(\mathcal{G}))
ight)$

 \Rightarrow integrality for $\xi_{X^{\vec{s}}_{\Sigma'}(E/K_{\infty})}$ Corollary (F.-Müller '24)

 $\Rightarrow \xi_{X\vec{s}(E/K_{\infty})} = \xi_{X\vec{s},(E/K_{\infty})}$

Suppose that
$$X^{\vec{s}}(E/K_{\infty})$$
 is Λ -torsion, and that every ordinary p-adic place

 $v \in \Sigma_n^{\text{ord}}$ is either non-anomalous or tamely ramified.

Further suppose that
$$\Sigma' \cap P_{\text{spm}} = \Sigma' \cap P_{\text{good}} = \emptyset$$
.

Then: $\forall \mathfrak{M} \subset \mathcal{Q}(\mathcal{G})$ maximal: $\xi_{X^{\vec{s}}(E/K_{\infty})} \in \operatorname{im} \left(\mathfrak{M} \cap \mathcal{Q}(\mathcal{G})^{\times} \to K_{1}(\mathcal{Q}(\mathcal{G})) \right)$

Recall:
$$\operatorname{Sel}^{\vec{s}}(E/K_{\infty}) \hookrightarrow \operatorname{Sel}^{\vec{s}}_{\Sigma'}(E/K_{\infty}) \twoheadrightarrow \bigoplus_{w \in \Sigma'(K_{\infty})} H^{1}(K_{\infty,w}, E[p^{\infty}])$$

$$\Sigma' \cap P_{\operatorname{spm}} = \Sigma' \cap P_{\operatorname{good}} = \emptyset \Rightarrow H^{1}(K_{\infty,w}, E[p^{\infty}]) \text{ finite } \forall w \in \Sigma'(K_{\infty})$$

$$\Rightarrow \left[X^{\vec{s}}(E/K_{\infty})\right] = \left[X^{\vec{s}}_{\Sigma'}(E/K_{\infty})\right] \in K_{0}(\Lambda(\mathcal{G}), \mathcal{Q}(\mathcal{G}))$$