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Introduction

The main goal of this thesis is to give an introduction into some basic concepts of Iwasawa theory,
most importantly a proof of the so-called main conjecture. Our aim is to present this in a very
detailed way, suitable for anyone with a background in algebraic number theory. While there
already exist quite a few accounts of the topics this thesis covers, the level to which they are able
to be readily understood may be deemed a bit too low, especially when it comes to the proof of
the main conjecture. Our hope is that this thesis may provide some help on this front.

Outline

The thesis is structured as follows.

Chapter 1 introduces some basic notions of Iwasawa theory, including the structure theory
of modules over the completed group ring Z,[T] and Iwasawa’s theorem on the p-part of class
numbers in a Zy-extension. The proof involves standard techniques of Iwasawa theory, which will
be used in the sequel.

Chapter 2 gives a very brief overview of the theory of (analytic) p-adic L-functions. The
aim here was not to present a thorough exposition but to give just enough context for the
interpretation of the Iwasawa main conjecture in the next chapter.

Chapter 3 is the heart of the thesis. Here we explain the statement of the Iwasawa main
conjecture. Roughly speaking, this asserts the equivalence of the p-adic L-functions of Chapter 2
with the characteristic power series—introduced in Chapter 1—of an Iwasawa module. We then
present Rubin’s proof of the main conjecture using so-called Euler systems. The proof is rather
complex, so in order to ease understanding, we have included a discussion of the ideas at play
before performing the actual proof.

Finally, in Appendix A we discuss how the analogy between function fields and number
fields, and thus the theory of curves over finite fields, motivates the study of Iwasawa theory.
The appendix can be read mostly independently of the rest of the text; it requires some familiarity
with algebraic geometry.

About notations

As of yet, there appears to be no wide consensus on notation in Iwasawa theory: that used by
Iwasawa in his seminal papers has been superseded by various different systems of notation. To
make things more complicated, authors frequently use the same notation for similar but different
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objects. In the present text we aimed to conform with notation used in some recent works, in
particular those used by Sharifi in e.g. [Sha]. A list of notations can be found on page 69.

Throughout the whole text, N = {1,2,...} shall denote the set of positive integers, and p
shall be an odd rational prime. Most statements can be extended to the case p = 2 with slight
modifications.

We fix, once and for all, a compatible system of primitive p-power roots of unity ¢, for n € N,
compatibility meaning that Cﬁ v+1 = Cpr. As usual, we let p, denote the group of r*® roots of
unity for r € N, pp= :=J,,5, be the group of p-power roots of unity, and

Qlup=) = | Qlupn1)

n=0

About references

The present text is primarily based upon the books of Lang [Lan90] and Washington [Was97].
Both are comprehensive accounts of the theory of cyclotomic fields, including basic Iwasawa
theory and a proof of the main conjecture, covering a much larger amount of material than
the present text. Whenever we do not state otherwise, these should be understood to be the
references.

Coates and Sujatha’s book [CS06] was also used as a reference; it is focused on the p-adic
zeta function and Rubin’s proof of the main conjecture. Their exposition of the material is self-
contained but less elementary than that of the present text; in particular, it relies heavily on
using measures.

A good reference for some of the key ideas is [KKS12]. We also recommend the lecture notes
[Sha]. The reader is encouraged to consult any and all of these references for slightly different
perspectives.



Chapter 1

Zp-extensions

In this chapter we shall introduce some basic notions of Iwasawa theory. In the first section we
will survey a few results about modules over the ring A = Z,[T"]. This ring is called the Jwasawa
algebra, and we will refer to A-modules as Iwasawa modules. There is a structure theorem of
finitely generated A-modules, which will be of paramount importance.

To illustrate this, let Ko, /K be a Galois extension with Galois group Z,; such a field extension
is called a Z,-extension. Then the non-trivial closed subgroups of the Galois group are p"Z,, and
it follows from the fundamental theorem of infinite Galois theory that the Galois subextensions

form a tower
Kpc..cK,c..c KicKy=K

where Gal(Ky/K,) = p"Z,. It turns out that in this setting, certain groups can be endowed
with a A-module structure, allowing us to use the aforementioned structure theorem to extract
more information about the extension.

In Section 1.1 we give will discuss the structure theorem and some related notions which will
be used extensively in the sequel.

Section 1.2 contains a standard proof of Iwasawa’s theorem on the orders of p-parts of class
groups in a Zy-extension of a number field. The proof we give is rather elementary and detailed,
aimed at a reader with modest background. In particular, we will only use basic algebraic number
theory, with the unavoidable exception of using the existence of Hilbert class fields as well as the
isomorphism between their Galois groups and the ideal class groups. A reader unfamiliar with
class field theory may take these statements for granted.

In Section 1.3, we will present some further results on various Iwasawa modules, using the
machinery of the preceding section. Here we will already need to use a lot of class field theory.
The results in this section will be used in the proof of the main conjecture in Chapter 3.

The default references for this chapter are [Was97, Chapter 13] and [Lan90, Chapter 5].
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1.1 The structure of A-modules

We will often work with fields resp. field extensions whose class groups, Galois groups, groups
of units etc. possess a Z,[T]-module structure. We call A := Z,[T] the Iwasawa algebra. In this
section we survey some of the basic results concerning A-modules. For a more detailed exposition,
see [Was97, §13.2] or [Lan86, Chapter 5, §§1-3].

We recall two important theorems from p-adic analysis [Was97, §7.1].

Definition 1.1.1. A nonconstant polynomial in Z,[T] distinguished if it is monic and all coef-
ficients but the leading one are divisible by p.

The following theorem states that there is a division algorithm for distinguished polynomials.
(Note that we cannot hope for a division algorithm for the whole ring A, because that would
imply being a principal ideal domain, which A is not: the ideal (p, T") is not principal.)

Theorem 1.1.2 (p-adic Weierstrass division theorem). Let f € A be a power series, P € Z,[T]
a distinguished polynomial. Then there exist unique ¢ € A and r € Zy[T] such that f = q¢P +r
and degr < deg P. O

Theorem 1.1.3 (p-adic Weierstrass preparation theorem). Any nonzero f(T) € A = Z,[T]
can be written uniquely as f(T) = p*P(T)U(T) where p = 0 is an integer, P(T) € Z,[T] is a
distinguished polynomial, and U(T) € A* is a unit. O

Corollary 1.1.4. A is a UFD.

Proof. Apply Weierstrass preparation, then repeated Weierstrass division for the distinguished
factor. It follows that A is a UFD with the irreducible elements being p and the irreducible
distinguished polynomials. O

We return to the study of A-modules; specifically, to one of the many incarnations of Na-
kayama’s lemma. Note that A is a topological module.

Lemma 1.1.5 (Nakayama). Let X be a compact A-module. Then the following hold.
(1) X is finitely generated over A iff X/(p, T)X is finite;
(2) X =0 iff X/(p,T)X = 0.

Proof. 1f X is finitely generated then X /(p,T)X is finite because A/(p,T)A is finite.

For the other direction of the first assertion, we first claim that for any compact A-module
X we have

@)X =0 (1.1)
n=0

Let U be a neighbourhood of 0. For each « € X there is a neighbourhood U,, such that (p, T)"U, <
U because (p,T)™ — 0 in A. Finitely many of these sets U, cover X by compactness. Since we
may choose U to be arbitrarily small, this proves the claim.

Now suppose that X /(p,T)X is finite, in particular, let X/(p,T)X = {Z71,...,Tx} where T;
is the image of x; € X under the quotient map. Let Y := Axy + ... + Axg. This is a compact
A-module because X is, and therefore so is X/Y. By definition, Y + (p, T)X = X, which implies
(p,T)X/Y = X/Y. It follows by induction that (p,T)"X/Y = X/Y for all n > 0. Then (1.1)
proves X /Y = 0. Hence X is generated by 21, ..., zj. This finishes the proof of the first assertion.
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The second assertion follows from this proof by letting &k := 0. O

Definition 1.1.6. A morphism of A-modules ¢ : X — Y with finite kernel and cokernel is
called a pseudo-isomorphism. Two A-modules X and Y are pseudo-isomorphic if there exists a
pseudo-isomorphism X — Y. This is denoted by X ~ Y.

Remark 1.1.7. Some authors use the term quasi-isomorphic.

Theorem 1.1.8 (Structure theorem of finitely generated A-modules). Let X be a finitely gen-
erated module over A. Then there exist distinguished irreducible polynomials f; € Z,[T| such
that

s t
X~N@DAPASDA/fi(T)™ A
i=1 j=1

where r,s,t,n;, m; € N.

Proof. Here we only sketch the proof; for details see [Was97, Theorem 13.12]. The proof is
similar to that of the structure theorem of finitely generated modules over PIDs. (For a more
general statement and proof, cf. [NSW15, (5.1.10)].)

Let X have generators uq,...,u,, let the relations between these generators be given by
equations Aq juq + ...+ Ay jun = 0. Then the matrix (\; ;) describes the structure of X.

We will perform the following operations on (\; ;). The first three are the usual row and
column operations providing isomorphisms of modules, while the other three are specific to A and
only provide pseudo-isomorphisms from X to another module. It is clear that the composition
of pseudo-isomorphisms is a pseudo-isomorphism, that is, the pseudo-isomorphism relation is
transitive.

A. Permute rows or columns.

B. Add a multiple of a row resp. column to another row resp. column.

C. Multiply a row or column by a unit in A.

1. If all elements of a row except for one are divisible by p then we may divide these elements
by p and multiply all other elements in the column of the exceptional element by p. We
obtain a pseudo-isomorphism X — X’ = X@uvA for a new generator v (and some relations).
(In the formula below, this operation is applied k times.)

ky/ ky/ / ’
A1 p /\1,2 P /\1,m A11 )‘1,2 T 1,m
k
A2 Aoz 0 dam P A21 Az2 0 Aom
k
/\n,l /\n,2 ce >\n,m p /\n,l )\n,2 o Am

)

2. If all entries of a row as well as a column are divisible by p* (k € N) and the entry in their
intersection isn’t divisible by p**! then we may divide all elements of the row by p*. (In
the formula below, p f X} ;.) We obtain a pseudo-isomorphism X — X @vA = X' @A/(p")
where the newly constructed matrix describes the relations in X’. Since A/(p*) is already
of the desired form, we need only focus on X'.

PN PN P N N Mg A,
kaz,l 2.2 .. A2.m pk)‘/2,1 Aoo o Aom
Xy Az o Aw AN Ana e A
P Ana n,2 n,m P AL 2 o
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3. If all entries of a row (A\;1,...,A\;im) are divisible by p¥, and for some p { A € A, we have
that (AX;1,..., A\im) is also a relation in X (but not necessarily a row of our matrix) then
we may divide all elements of the row by p*. We obtain a pseudo-isomorphism X — X',

k! k!’ ky/ / / /

p /\1,1 p /\1,2 P /\1,m 1,1 1,2 1,m
A2,1 A2.2 e A2,m A1 A2 ot Ao
)\n 1 )\n,2 o )\n,m /\n,l /\n,2 o )\n,m

Using operations A, B, C, 1, and 2 inductively, we can bring our matrix to a diagonal form,
with the elements in the diagonal consisting of distinguished polynomials and zeros. Operation
3 is used only at the end of the process when we deal with zeros in the diagonal. Putting the
summands A/(p*) back, we obtain a pseudo-isomorphism

s q
X — AT @(—BA/})HIA@ @A/)\j7jAA

i=1 j=1

Here the A; ;’s may not be irreducible, but this can be resolved by using that the natural morph-
ism A/(fg) — A/(f) ® A/(g) has finite cokernel whenever f,g € A are coprime (cf. [Was97,
Lemma 13.8.1]). This finishes the proof. O

Ezample 1.1.9 (Pseudo-isomorphism is not symmetric). To construct a counterexample, consider
the inclusion of the ideal (p,T") — A. This is a pseudo-isomorphism of A-modules: the kernel
is trivial and the cokernel is Z,[T]/(p,T) ~ Z,/(p) ~ Z/pZ, so we have (p,T) ~ A. However,
we claim that A %« (p,T). Indeed, suppose we have a pseudo-isomorphism ¢ : A — (p,T). Then
Ime = (f(T)) where f(T) = ¢(1), and Cokerp = (p,T)/(f). Since A/(p,T) ~ Z/pZ is finite,
the cokernel is finite iff A/(f) is finite. This is not the case: write f = pFg where p { g. Then
A/(p*) ~ (Z/p*Z)[T] is infinite, and A/(g) is infinite as well by the p-adic Weierstrass division
theorem (Theorem 1.1.2), hence A/(f) is infinite.

This demonstrates that the obstruction to symmetry in the pseudo-isomorphism relation lies
in the free part. The following lemma makes this more precise.

Lemma 1.1.10. The pseudo-isomorphism relation is symmetric for finitely generated torsion
A-modules.

Proof. This will follow once we show that the pseudo-isomorphism in the structure theorem
can be reversed in this case. To construct this morphism, run the algorithm in the proof of the
structure theorem. The morphisms obtained by using operations A, B, and C are isomorphisms,
hence they can be reversed. Morphisms coming from operations 1 and 2 are inclusions of X into
a direct sum X @ vA; replace them with projections X @ vA — X. These will have finite kernels
for the same reason the inclusions had finite cokernels. By using these operations, we bring our
matrix to diagonal form. We know that there are no zeros in the diagonal since those would
correspond to free parts of which there is none due to the module being torsion. Thus we obtain
a pseudo-isomorphism

s q
D AP AR D AN A — X
i=1 Jj=1

We again factor the X, ;s using that there is an injection A/(f) ® A/(g) — A/(fg) with finite
cokernel whenever f, g € A are coprime (cf. [Was97, Lemma 13.8.2]). O
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A more general—but not more illuminating—proof of Lemma 1.1.10 can be found in [NSW15,
p. 271, Remark 1.].

Corollary 1.1.11. The pseudo-isomorphism relation is an equivalence relation for finitely gen-
erated torsion A-modules.

Proof. Reflexivity is clear, and symmetry has just been proven in Lemma 1.1.10. It is easily
seen that the composite of two morphisms with finite kernel and cokernel also has finite kernel
and cokernel, proving transitivity. O

Definition 1.1.12. Consider a finitely generated torsion A-module X. Using Theorem 1.1.8,
write

s t
X ~@APADDA/f;(T)™ A
i=1 j=1

We define the characteristic ideal of X by

e ({107) ([T

This is easily seen to be well-defined and invariant under pseudo-isomorphisms. A generator of
the characteristic ideal is called a characteristic polynomial of X. If all n; = 0 (which we will later
call the = 0 case, see Definition 1.1.14 below) then the characteristic ideal is generated by the
characteristic polynomial of the multiplication-by-T linear map; cf. [KKS12, Proposition 10.23]
for details.

Lemma 1.1.13. Characteristic ideals are multiplicative in short exact sequences. That is, if
0-Y Y ->Y" >0
s a short exact sequence of finitely generated torsion A-modules then
Char(Y) = Char(Y") Char(Y")
Proof. Let
0-Y % @ A/fi(T)™ A — Cokerp — 0

where f;(T) € A is either irreducible or p, and Coker ¢ is finite (the kernel is zero because Y is
torsion, see the proof of Theorem 1.1.8). Let f € A be either an irreducible polynomial or p, and
tensor by A(sy; this preserves exactness [Stacks, Tag 00CS].

0= Y @ Ag) = DA/ fi(1)™ Agy — Coker o @ Ap) — 0
7

For any g € A\((p,T) u (f)) there is some n € N such that g” Coker p = 0 by finiteness, and
g becomes a unit under localisation, thus Coker p @ A(s) = 0. Moreover, for all 7 such that
(f) # (f:), fi also becomes a unit, thus these terms in the direct sum vanish. We have proved

YoaAg = @D Ap/fi(D7 Ay
(fi)=0f)

Doing this for Y’ and Y”, and all f := f;’s finishes the proof. O
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Definition 1.1.14. Let X be a finitely generated A-module and write

S t
X~ANo@PAp " ADPAf;(T)™ A

i=1 j=1

Let p:= Y7 ;n; and X := Z;:l deg f;(T)™. These A resp. p are called the A- resp. p-invariant
of the module X.

1.2 Iwasawa’s theorem on the growth of the class number

Let K be a number field and Ko /K a Zjy-extension, i.e. I' := Gal(Ky/K) ~ Z,, and let K,, be
the subextension corresponding to the subgroup p"Z, for n > 0 (in particular, Ky = K). Then
the ideal class group Cl(K,,) is a finite abelian group, and therefore can be decomposed as

CIK,)=A,® A, (1.2)
where A, is the p-Sylow subgroup. In particular, A, has order p®» for some exponent e,.

Theorem 1.2.1 (Iwasawa). There exist ng,c € No such that for all n = ng we have e, =
up™ + An + c.

Remark 1.2.2. Theorem 1.2.14 is a generalisation of this statement.

Remark 1.2.3. It is conjectured that p = 0 whenever K,/K is a cyclotomic Zj,-extension, that is,
one obtained by adjoining p-power roots of unity. This is the so-called Twasawa p = 0 conjecture;
for a survey, cf. [Suj11]. It has been proven for abelian number fields K by Ferrero and Washington
[FWT9] but remains open when K is an arbitrary number field. There exists a counterexample
for non-cyclotomic Z,-extensions. There is another statement called the Ferrero—Washington
theorem, concerning the p-adic L-function, stating that at least one of its coefficients is a p-unit,
cf. [Lan90, Chapter 10, Theorem 2.3] or [KKS12, Therorem 10.9]. The Iwasawa main conjecture
implies the equivalence of these two assertions. We further remark that even though Barsky
proposed a proof of the u = 0 conjecture for all totally real fields [Bar04], and thus it was stated
in [MPO05, §5.4.5] that this case of the conjecture had been proven, Barsky later retracted the
paper due to an error.

Remark 1.2.4. In the proof of Theorem 1.2.1 we will use the structure theorem (Theorem 1.1.8)
for a finitely generated torsion A-module. As we shall see towards the end of the proof, the ex-
ponential part up™ comes from the direct summands A/p™ A whereas the linear part An comes
from the summands A/f;(7)™i A. This is in line with the definition of these invariants in Defin-
ition 1.1.14. See Theorem 1.2.14 for a generalisation.

The rest of this section will be devoted to the proof of Theorem 1.2.1. During the proof, we
will establish basic notions of Iwasawa theory. In particular, we will discuss through an example
how some groups associated with fields within a Z,-extension such as various Galois groups can
be endowed with a A-module structure. As it will be obvious, this construction can be applied
to other groups too, and in later sections we will do so without further comment. There are also
other important steps within the proof that are interesting in their own right. Some of these will
be highlighted in Section 1.3.

Proof. First we will use class field theory to pass from the ideal class groups above to certain
Galois groups. Let M,, the unique maximal unramified abelian extension of K,,, called the Hilbert
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M,
N
n Ly,
A

L

Figure 1.1: The p-Hilbert class field L,, of K,

Figure 1.2: A Z,-extension with the tower of corresponding p-Hilbert class fields

class field, the existence of which is proven in class field theory. Let L,, be the unique maximal
unramified abelian p-extension of K,,, L/ the unique maximal unramified abelian extension of
K, of degree coprime to p; then L,, and L/, are subfields of M,,, and we call L,, the p-Hilbert
class field of K,,. We have

Gal(M,/K,) = Gal(L,/K,) x Gal(L, /K,) (1.3)

where Gal(L,/K,,) is a p-group and Gal(L],/K,) has order coprime to p. By class field theory
we have an isomorphism (the Artin map)

CUK,) = Gal(M,/K,)
Comparing this with (1.2) and (1.3), we conclude that there is an isomorphism
A, = Gal(L,/K,)

In particular, #A,, = # Gal(L,/K,), thus from now on we may focus on Galois groups instead
of ideal class groups. We will, in fact, by abuse of notation, also denote this Galois group by A,,,
with the remark that for the rest of this proof, one should think of it as a Galois group.

Let Loo := U5 Ln, G := Gal(Lo/K). Then X := Gal(Le/Koy) = lim A,, with respect to
the norm maps. (This is the notation most widely used, but alas, it is rather counterintuitive
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here. The symbol Ay is commonly used for the injective limit.) As this projective limit contains
all the information about the groups A,, we will now concentrate on X,. We will endow X,
with a A = Z,[T]-module structure and then show that X, (or rather a submodule of it) is
finitely generated over A, which will mean that the structure theorem of such modules will be
applicable, meaning that we will obtain a relatively explicit description of X.

We construct the aforementioned module structure on G in a slightly more abstract setting in
Lemma 1.2.5 so that it remains clear that we only need abelianity of I' and X, for this, nothing
more.

Lemma 1.2.5. Let G be a group and N < G an abelian normal subgroup such that the quotient
H = G/N is also abelian. Then H acts on N in the following way: for gN' € H and n € N, let
nd = nN = gngt.

Proof. We first check that n9N is well-defined, i.e. it does not depend on the choice of represent-
ative g € G of the coset gN. Another representative is gn’ where n’ € A/, and since N is abelian
we have

1 -1 -1

=gn'n(n/)tg™! = gn'(n/)!

1

(gn”)n(gn)~ ng~' =gng~

This shows that n9 is indeed well-defined.

We now show that H (- N It is clear that n' = n, so it only remains to prove (n9V)M"N =

n@N)IN) for g h e G. By definition,
(ngN)hN _ hgngflhfl
and using that H is abelian, we have
nNION) — p(BNYGN) — (RN g g1 p 1

This finishes the proof. O

In the setting of the previous lemma, let H have the structure of a topological ring, and let
ho € H be a fixed topological generator of H, meaning that the multiplicative subgroup (hg) € H
is dense. Notice that (1 +T') € H[T] is a topological generator of H[T]. Therefore letting

(1+T)n:=n" forne N,

combined with the action H (¥ N gives N the structure of a H[T]-module.

Lemma 1.2.6. Assume that the exact sequence of groups
1>N->G->H-—1

splits, that is, G ~ N x H. Then G’ = TN = N"~1 where G' denotes the closure of the
commutator subgroup of G.

Proof. For any n € N we have
nho=t = phon=1 = honhg'n = [ho,n],

which proves N1 c g’

10
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Conversely, consider a commutator [a,b] for a,b € G. Since G ~ N x H we may, by slight
abuse of notation, write a = na, b = mf where n,me N, a, 8 € H.

[a,b] = [na, mp]

namBa n71p7tm ™1

! H is abelian

= nama 1 Bn B im”
= nm® (n*1)5 m~!

n (nfl)'g mOm ! N is abelian

_ nlfﬁmafl
Since hg is a topological generator of H, we have § = lim;_,o, hy' for some ¢; € Z. Therefore

1-08=1lim (1 —-hg)=lm (1—(1+71)%)
1—00 1—00
Since (1 — (1 +T)%) € TH[T] for all i € N, we have 1 — 3 € TH[T]. Hence n*~# € TN, and
similarly m®~! e TN, proving G’ < TN. O

Apply Lemma 1.2.5 with G := G, N := X, and H := T to obtain an action I' " X, and
thus a A = Z,[T]-module structure on X,. Fix a topological generator hg := -y of T..

We will later use Lemma 1.2.6 to give an isomorphism between A,, and a certain quotient of
Xs. To be able to use the Lemma, we need to verify the splitting condition. This will be done
using inertia groups, which behave nicely if the corresponding primes ramify totally, which will
turn out to be the case for some subextension K /K, of Ky /K.

Thus we need to contemplate what happens when we pass from K /Kj to a subextension
K /K, (see Table 1.1). The latter is also a Z,-extension with Galois group I';, := I'?" (the group
I is written multiplicatively); this has topological generator AP" . Since v corresponds to (1+T)
and ~ gets replaced by 4*", and T gets replaced by

1+T)P" -1

1+7)" —1=T-
(1+1) T

Therefore A becomes
A = Z[(1+ T 1]

Note that a module over A, is finitely generated iff it is finitely generated over A. Finally notice
that Ly, for Ky is the same as for K,,, with the Galois group becoming Gal(Ls/K,) = GP".

KOO/KO KOO/Kn
Galois group r r, =r"
topological generator ol AP"
Iwasawa algebra A=2Z,[T] | A =Z,[(1 + )" —1]
generator T 14+T)P" -1
maximal unramified abelian extension Lo Lo
Galois group G Gr"

Table 1.1: Passing between extensions

11



Chapter 1. Z,-extensions

Claim 1.2.7. There are only finitely many prime ideals ramifying in Ko, /K, namely those above
p.

Proof. Let p be a prime in K which ramifies in K, /K. As there are only finitely many prime
ideals above p, it is sufficient to show that p lies above p in the extension K /Q.

Koy
|
Ky,
Zy ‘ total I =97,
K, B ramification inertia group
1
K p
-
Q q

Figure 1.3: Objects in the proof of Claim 1.2.7: fields and Galois groups on the left, prime ideals
on the right

We argue by contradiction: suppose p lies above some rational prime g # p. (See Figure 1.3.)
Let I be the inertia group of p in Ky, /K. As p ramifies, I # {0}, hence I = p’Z,, for some £ > 0.
In particular, [ is infinite, and as archimedean primes have inertia group of order either 1 or 2,
it follows that p is non-archimedean.

Now consider the fixed field of I: this is K. Let *J3 be a prime in K, above p. For every m > ¢,
B ramifies totally in K,,/K, by construction, and the ramification degree is [K,, : K¢] = p™*.
By the upcoming Lemma 1.2.8, M(P) = 1 mod p™~* for all m > ¢ where M denotes the absolute
norm. Taking m large enough, this implies 8 = (1) which is a contradiction. O

Lemma 1.2.8. Let F'/F be a finite abelian extension of the algebraic number field F. Let p be

a prime of F not lying above [F' : F|. Then for any prime P of F' above p, the inertia group I
at P relative to p is cyclic and N(p) = 1 mod #1.

F B ke
| oeDn| 7]
F p krp
|

Q

Figure 1.4: Objects in the proof of Lemma 1.2.8

Proof. Let kp = Op/p and kpr = Op/ /B be the residue fields (see Figure 1.4). Let D denote
the decomposition group at 9 relative to p in F’'/F. Recall the short exact sequence

1-1—->D— Gal(k‘pl/k}?) — 1

o0

12



§1.2. Iwasawa’s theorem on the growth of the class number

Let m € P\P? # ¢, and consider the map
f:D — k3,
o(m)
m

It is easily checked that f(o7) = f(o)af(r) for o,7 € D. Since I = {oc € D | ¢ = 1}, f|r is
a homomorphism. We will show that f|; is injective and has image in kj, which implies the
statement of the lemma.

g +—

We first show injectivity. Let o € Ker f be an element of order m. It suffices to show o(7) = ;
we know that o(7) = 7 mod PB2. Let k > 2 be fixed. Then

o(r) =7 + ar® mod Pr+? (1.4)

for some a € Op/. Actually, we may assume a € O(p/yr where (F’ )I denotes the fixed field.
Iterative application of o to (1.4) yields

r=0"(m)=71+a(r" +o(m) +...+ 0™ (7)") mod P
=r+a(r’ + 7"+ ... +7%) mod Pt using (1.4)
= 7 + amz® mod PrH!

Since p { [F" : F], B m, and thus a = 0, o(7) = 7 mod PF*+! for all k > 2. Hence o(r) = ,
showing injectivity of f|r.

We now prove Im f|; € kx. Let 0 € I; we will show that f(o) is fixed by all automorphisms
in Gal(kp//kr). Let 7 € Gal(kp: /kr), 7 € D. We have o7 = 70 since F'/F is abelian, thus

flor) = f(r0) = f(T)7[(0),
hence f(o) = 7f (o). This finishes the proof. O
Remark 1.2.9. For a slightly shorter but less elementary proof of Claim 1.2.7 using local class
field theory, see [Was97, Proposition 13.2]. The proof of Lemma 1.2.8 is from [Lon77, page 94].

Let p1,...,ps be the primes ramifying in K /K. Let Iy, ..., I; < T be the respective inertia
subgroups. As in the proof of Claim 1.2.7, I; = pein for some ¢; = 0. Let

1= ()L =pZ,
=1

where e = max(¢y,...,¢). Then I has fixed field K., and since Gal(K/K.) < I < I; for all ¢,
we have that each p; ramifies totally in the subextension K /K. where p; is an extension of p;
to K.

Thus for any Z,-extension it is possible to pass to a subextension where every prime is
either unramified or totally ramified. From now on until the end of the proof of Claim 1.2.10
we assume Ko, /K itself to be such an extension; this will greatly simplify our formulee. Using
the considerations summarised in Table 1.1, we will then generalise the results to an arbitrary
Z,-extension: this will be Claim 1.2.11.

The extension Ly /Ky is unramified since each L, /K, is, hence I; n Xy = {1}. Also since
p; ramifies totally in K, /K, the inclusion I; < G induces I; = T' = G/X,. Therefore

G=Ingo=XooIi i=1,...,8 (15)

13



Chapter 1. Z,-extensions

In particular, Lemma 1.2.6 can be applied to obtain

G =TXy=XL" (1.6)

Let o; € I; be the element corresponding to v under the above isomorphism I; ~ I'. Since
I, € G = X1, there exist a; € X, for which o; = a;01 (i = 2,...,s). By Table 1.1, if we switch
o

7 )

from K, to some extension K,, v gets replaced by ", thus o; becomes ¢? , and a; becomes

n
1+oi+...to? 1
a; " ! 1 = vpa; where

P =1 (14T -1

v—1 T

Up :

This can be seen as follows:

U’Z;n _ (aial )pn
. "
= ai(o1a;07 V) (02aior?) - (oF 1ai0f 1)0’13

p"—1 5

_ a}+01+...+01 0{)
Claim 1.2.10. Let Yy < X, be the Z,-submodule of X4, generated by as,...,as € Xo and G'.
Let Y, = v,Yy. Then A, ~ X, /Y, forn = 0.

Proof. For n = 0, Ly/Kp is the maximal unramified abelian subextension of L /Ky by con-
struction. Hence Gal(Lo/Lg) is the closed subgroup of G generated by I1,...,I; and G’, or
equivalently, by Iy, as,...,as and G'. Hence

Ap = Gal(Lo/Ky) by definition
= G/ Gal(Le/Lo) Galois theory
= XooI1/Gal(Lo/Lo) (1.5)
= Xo/Yo by definition

For n > 0, our considerations above yield that Yy becomes v,,Yy = Y,, when passing from K
to K,,. O

At this point we give up our assumption that every prime is either unramified or totally
ramified in K,,/K. We generalise Claim 1.2.10 to arbitrary Z,-extensions Ko /K with K /K,
being a subextension as above, i.e. in which all ramifying primes of K /K ramify totally.

Claim 1.2.11. Let vy . := vy /Ve. Then A, ~ Xo /vy, Ye.
Proof. This is immediate from Claim 1.2.10 and

Vn,eYe = ﬁVeYvO = VnYO = Yn O

€

Claim 1.2.12. Y, is finitely generated over A. (Hence the same holds for X, too since X /Y. =
A, is finite.)

Proof. Recall that Y, is finitely generated as a A-module iff it is finitely generated over A, =
Zo[((1 + T)?" — 1]. By Nakayama’s lemma (Lemma 1.1.5.1), Y, is finitely generated over A, iff
Y./(p, (1 + T)P" —1)Y, is finite. Since vey1 . € (p, (1 + T)?" — 1), we have

# (}/e/(pa (1 + T)pe - I)Y;) < # (Ye/ye-&-l,e}/e) < # (XOO/Ve-&-l,e}/e) = #Ae+1 < O

14



§1.2. Iwasawa’s theorem on the growth of the class number

By the structure theorem of finitely generated A-modules, Y, is quasi-isomorphic to

s t
E. =AY @D AN e @A/ f;(T)™ (1.7)
i=1 j=1
where each f; is distinguished.
Recall that our goal is to compute e, up to constant for n large enough where p~ = #A,,.
We have

#An = # (XOO/Vn,eYe) = # (XOO/Ye) # (Yve/Vn,eYe)

The first factor is some power of p independent of n, so we may focus only on Y. /v, (Y.. The
following lemma tells us that we can work with E. /v, .E. instead.

Lemma 1.2.13. Let Y, E be A-modules for whichY ~ E and Y /v, Y is finite for all n > e.
Then there are ny = e, ¢ = 0 such that for n = n,

# (Y/Vn,ey) =p# (E/Vn,eE)

Proof. For each n > e the quasi-isomorphism ¢ and v, . give rise to the following commutative
diagram

Ker(vn,e) Ker ¢ Ker(p mod vy, ¢) -------
0——— Vn’eY Y Y/Vn,eY — 0
J{l’n,eip ® lga mod vy, e
0—— Vn’eE E E/Vn,eE —F 0

————— » Coker(vy, ) — Coker ¢ —— Coker(p mod vy, )

We will show that for large enough n, the cardinality of the kernels and cokernels stabilises. This
implies the statement of the Lemma.

Looking at representatives, we find
# Coker (v, o) < # Coker ¢ (1.8)
By the snake lemma, we have an exact sequence

0 — Ker(vp,ep) — Ker ¢ — Ker(¢ mod vy, )
— Coker(vy, o) — Coker ¢ — Coker(y mod vy, o) — 0,

which implies the inequalities

#Ker(vnep) < #Kergp (1.9)

# Coker(p mod v, o) < # Coker ¢ (1.10)
1.10)

# Ker(p mod vy, ) < # Ker(p)# Coker (v, ) ( < #Ker(p)# Coker(p) (1.11)

15



Chapter 1. Z,-extensions

Now observe what happens if we let n increase. Since vy, ¢ | Vpyke for k = 0,

# Ker(Vn-Hc,eSO)
# Coker(¢ mod vy, 4 k.¢)

# Ker(vy, ) (1.12)
# Coker(p mod vy, ¢) (1.13)

A\ARV/AY

It is easily seen that multiplying representatives for Coker(vy, ) by Vnik e/Vn,e gives represent-
atives for Coker(vp+,¢), hence

# Coker(Vptk,ep) < # Coker(vy () (1.14)
Putting all these inequalities together, it follows that
# Ker(vy, ), # Coker(vy, ), and # Coker(¢ mod vy, ¢)
stabilise for n > n; where nq > e is suitably large. The snake lemma yields

# Ker(vy o) # Ker(p mod vy, o )# Coker ¢ = # Ker(¢)# Coker (v, ) # Coker(p mod vy, )

Since every term except for # Ker(p mod vy, ) is constant for n = n;, # Ker(¢ mod vy, ) must
stabilise as well. This completes the proof. O

Now all that remains is to compute #(E /v, E). This may be done for all three types of
direct summands in (1.7) separately. In what follows, we omit the indices ¢ and j for brevity.
Note that what happens here is completely general and holds for any finitely generated torsion
A-module for which #(E. /vy, E.) is finite (see Theorem 1.2.14).

Case 1. First consider A/(vy ). Since the polynomial v, . is distinguished, the quotient is
infinite: this follows from the p-adic Weierstrass division theorem (Theorem 1.1.2). But as
#(Ye/vn,Ye) is finite, so is #(Ee /vy, E.), hence E has no free part, that is, r = 0.

Case 2. For A/(p*), we have

ABY) [N 0F) = A/ e, ")
It is easily seen that the polynomial

1+T)P" —1

S T

is distinguished. Using Weierstrass division (Theorem 1.1.2), we find that the above quotient
module has representatives that are polynomials mod p* of degree at most deg Upe = p" — D%,
hence the order is pF®"—P%) — php" +constant

Case 3. Cousider A/(f(T)™). Since f is distinguished, so is f™. Let d = deg f™. Thus for
Pt =d,
(1+T)"" =1+ p- (polynomial) (mod f™)

and taking the pt* power yields

(1+ T)”"+1 =1+ p*(polynomial) (mod f™)

16



§1.3. Class field theory of Z,-extensions

Therefore

n+1

( A+T)P" +. . +(1+ T)(Pfl)P"“) ((1 +T" - 1)
P

(1+T)P
= p(1 + p - (polynomial)) ((1 + TP - 1) mod f™

Since

((1 LT 1) Vs
(T+T)7" " =1)  Varie

and (1 + p - (polynomial)) € A*, we get vy42 A/(f™) = prni1,A/(f™) for all n > ny where
ng > e and p"? > d. Therefore

# (AU [oniaeh(F™) = # (MU™) [vnsa,eA(F7))
= # (AU /oA/G™)) # (PA/™) [pvnsa. e/ (F™)
(M) frnsned/ ()
because
A/GF™) [PA/F™) = M(p ™) = A/(p.T7)
and multiplication by p is injective on A/(f™) since (p, f) = 1.

In conclusion, for all n > noy + 1 we have

# (A/(fm)/vn+2,e/\/(fm)> = pl(n—na=1) 4 (A/(fm)/lfn2+1 eA/(fm)) piln-teonstant

(The quotient on the right hand side must be finite because #(E, /vy, Ee) is finite.)

Combining the computations above—the k’s add up to p and the d’s add up to A—and letting
ng := max(ni,ns + 1) finishes the proof of Theorem 1.2.1. O

As before, let T, = I'?", and let Ep, := E/ (y*" — 1) E denote the module of T',-coinvariants.
As already alluded to, the calculation of #(E /v, E) in the end of the proof above gives us the
following:

Theorem 1.2.14 (Iwasawa). Let E be a finitely generated A-module such that Er, is finite
for all n. Let #Er, = p° denote its cardinality. Then there exists ¢ = 0 such that for every
sufficiently large n we have e, = up™ + An + c. O

1.3 Class field theory of Z,-extensions

In this section we collect some consequences of Iwasawa’s theorem as well as other statements
from the class field theory of Z,-extensions. These will later be used in the proof of the Iwasawa
main conjecture.

Remark 1.3.1. In the Zy-extension Q(up~)/Q(pp), the only prime ramifying is p, and it does so
totally. This will allow us to use some results of the previous as well as this section in this setting;
we will do this in the proof of the Iwasawa main conjecture.

17



Chapter 1. Z,-extensions

Lemma 1.3.2. X, := lim A, is a finitely generated torsion A-module (called the unramified
Iwasawa module).

Proof. We have finitely generatedness by Claim 1.2.12; and being torsion was shown in Case 1
on page 16. O

Lemma 1.3.3. Let K/K( be a Zy-extension with only one prime ramifying, and it doing so
totally. Then Ag = 0 iff A, =0 for alln = 0, the latter being equivalent to X = 0 by definition.

Proof. One direction is obvious. Suppose Ag = 0. Apply Claim 1.2.10 with s = 1: using (1.6),
this yields Ag ~ X, /Yy = Xon/T Xoo. By assumption, Xo,/T X = 0, therefore Xo/(p, T) X =
0, hence X, = 0 by Nakayama’s lemma (Lemma 1.1.5.2). O

Let us consider a Z,-extension K, /K where Ky is a number field. For all n < oo let H,, be the
p-Hilbert class field of K,, and €2,, be the unique maximal p-abelian extension unramified outside
p (also known as the unique maximal p-abelian p-ramified extension), with X,, := Gal(Q2,,/K},)
being the Galois group. It will be convenient to use the language of ideles for the next theorem.
We recall the following notation: let J,, denote the ideles of K,,, and let

un = H LL’%P

p a prime of K,,
be the group of unit ideles where
o0 Ok, » if pis non-archimedean
P Ky,  if pis archimedean

Furthermore let

Unp = [nps Yo = [ [ne = [rs JF:= ] K7

plp L#p Mp v an infinite
prime of K,

Finally let

¢, =0k , 117({77;) = {ueﬂnyp}Vp | p:u=1modp™} for m >0,
and o,, : &, — i,, be the diagonal embedding. Note that the sets ngf;,),m > 0 form a
fundamental system of neighbourhoods for L, ,.

Theorem 1.3.4. For all n < o one has

Gal(Q,/Hy) > 4f1) / (461) 70 )

where overline means closure in i, ;.

Proof. Let n < oo; the case n = oo will follow by taking projective limits. For the sake of
simplicity, we will omit the indices n (as we will be working on just one level of the Z,-extension
in the proof, these indices would be superfluous).

Note that we have

4 /(4D A 7,€) = (4,/5,€) @27

Indeed, this follows from ilp/i,lj(gl) ~ (Z/pZ)* and that ilél) is a pro-p group [Neu99, Proposi-
tion 10.2]. So it remains to show

Gal(Q/H) ~ (4/0,€) @z Zy (1.15)

18



§1.3. Class field theory of Z,-extensions

Class field theory gives us the following isomorphism (by the description of unramifying
primes in terms of ideles, cf. [Lan86, Chapter XI, §4, Theorem 4] or [Was97, Appendix on Class
Field Theory, Theorem 11])

(/8507 K*) (8847 K [T TPK)) @,
(94K (/8 T TP K))) @2 7,
~ (Gal(H/K) (4,/0,€)) ®z Z,

In the last step we used J/UK* ~ Gal(H/K) in the first term. As for the second term, it is
easily seen that we have

Gal(Q/K) ~ (J/il JOOKX)®ZZ
~
~

UL 7 A8, = Ul @

Taking intersections for m > 0 on both sides, it follows from the fact that the sets L[ ) form a
fundamental system of neighbourhoods that

U/ (4 0 Upy JPK™) = 4, /0, €
Since H is the p-Hilbert class field of K, Gal(H/K) ®z Z, = Gal(H/K). Then (1.15) follows
from Gal(Q/H) = Gal(Q/K)/Gal(H/K). This completes the proof. O
Corollary 1.3.5. X, is a finitely generated A-module (called the p-ramified Iwasawa module).

Proof. X has a natural A-module structure. Since Hy/K) is a finite extension and X is a pro-
p-group, Theorem 1.3.4 yields a pseudo-isomorphism Xo ~ g /00, &o. The group o , contains
a subgroup of Zy-rank (Ko : Q) and finite index [Neu99, §5.3], therefore rkz, o, = (Ko : Q),
and we obtain

r:=1kg, X9 = (Ko : Q) —rkz, 00,&o

Since X is the Galois group of the maximal abelian extension of Ky inside {1y, we have that Z;,
is pseudo-isomorphic to the commutator subgroup of Gal(Q2y/Kj). The commutator subgroup of
X i8 Xoo/TX o0, 80 we get that Xop /T X s ~ Z;_l where the (—1) in the exponent comes from the
difference between the base fields of Xy and X.,: these are Ky resp. Ko, with the Galois group
between them being I' ~ Z,. From X, /TXs ~ Z;_l it follows that X is finitely generated
using Nakayama’s lemma (Lemma 1.1.5.1). O

We will now specialise to the extension where K,, = Q(pn+1), with which we will be working
in Chapter 3. (For more results on the above level of generality, cf. [Was97, §§13.1, 13.4-5] and
[Lan90, Chapter 5, §§5-6].) Note the apparent discrepancy of indexing between K,, and Q(ft,n+1);
it will stay with us in the sequel.

In this case, there is only one prime above p in K, namely p = (1 — (yn+1). The objects
denoted by Fraktur letters above become the following; the Latin letters are the notation we will
use in Chapter 3.

oty = Oé(# 11),p local units,
. 117(11;7 = {u € Oé(upnu),p u=1mod (1— Cpn+l)} =: U,, principal local units,
= Oé(u w.y) = En global units,

° iln,p Nopp&n = E, nU, =: E,

Under this notation, Theorem 1.3.4 yields the following exact sequence.
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Chapter 1. Z,-extensions

Corollary 1.3.6. There is an exact sequence

0= Up/Ep — Xop = Xop — 0 O

We recall the notion of orthogonal idempotents of a group ring.

Definition 1.3.7. Let A := Gal(K(/Q) and let

This e, is called the orthogonal idempotent associated with a character x of A (such a x is called
a character of the first kind in the literature).

For a slightly more general definition, see [Was97, §6.3] or [KKS12, Proposition 10.12]. A
thorough exposition is presented in [Sha, §2.8]. The properties of e, which we will use in the
sequel, all of them easily verifiable, are collected in the following proposition.

Proposition 1.3.8. For all characters x # X' of A and o € A:

(1) €2 = ey (idempotence)
(2) eyeyr = 0 (orthogonality)
(3) 2 ex =1 (completeness)
(4) eyo = x(o)ey (eigenspace property)
From these it follows that any module M over the ring Q[A] admits an orthogonal decomposition
M = @X exM. O

As the proposition suggests, one should think of e, M as the x-eigenspace. In particular,
summing e, M over just the even characters (those for which y(—1) = 1) gives the plus part M+
of M, i.e. the largest submodule on which complex conjugation acts trivially. Summing over odd
characters (x(—1) = —1), we obtain the odd part M, on which complex conjugation acts by

(=1).

Lemma 1.3.9. ¢, Xy, is torsion and (e, Xx)/(V7" — 1) =~ e, X, for all x # 1 even. (Here 1
denotes the trivial Dirichlet character.)

Proof.  As above, X,, ~ Zj, for r = (K, : Q) —rkg, 0y, ,&,. We have (K, : Q) = r; + 2ry and
the second term is r1 + ro — 1 by Leopoldt’s conjecture [Was97, Corollary 5.32], so r = r9 + 1.
We lose one rank for the same reason as in the proof of Corollary 1.3.5, and complex embeddings
are killed by taking e, for x # 1 even, which proves that e, X is torsion.

Since €, is the maximal abelian extension of K, within ., we have
Cal(Qu/Ky) = X3
It follows that Gal(Qy /) = X2 ~%, and therefore
Gal(Qn/Ko) = X0 /XY 1
The assertion will now follow from
ey Gal(Q,/Ky) = ey Xy (1.16)

Since the difference between the two Galois groups Gal(Q2,,/K) and X,, = Gal(Q,,/K,,), namely
Gal(Ky/K,), is in the 1-eigenspace, the assertion (1.16) holds for x # 1 by orthogonality. O
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Chapter 2

p-adic L-functions

In this chapter we very briefly survey the various equivalent definitions and some basic proper-
ties of p-adic L-functions. As our goal is to discuss and prove the Iwasawa main conjecture in
Chapter 3, this chapter covers only slightly more than necessary for this. In particular, we prove
nothing, and won’t state everything in the fullest possible generality.

Here we present two ways to define p-adic L-functions: one through p-adic interpolation, and
one by using so-called Stickelberger elements. The two definitions of course yield the same object.
The first method is due to Kubota and Leopoldt [KL64], while the second one was introduced
by Iwasawa [Iwa69b].

The definition by Kubota and Leopoldt is more analytical, which is why the p-adic L-functions
in this chapter are sometimes referred to as analytic p-adic L-functions, as opposed to algebraic
p-adic L-functions which arise as generators of certain characteristic ideals, to be discussed in
Chapter 3. The Iwasawa main conjecture asserts the equivalence of these two notions.

There is also a way to interpret p-adic L-functions as measures. We won’t discuss this here, as
we shall not need it in the sequel. We refer to [KKS12, §10.1(e—f)], [Was97, Chapter 12], [CS06,
§3.1-4.2], [Lan90, Chapters 2, 10], [Kob84, Chapter II]. The thesis [Cas08] also discusses various
different approaches to p-adic L-functions in detail.

2.1 Definition via p-adic interpolation

Let x : Z — Q be a Dirichlet character of conductor f. By fixing an embedding Q < C,,, we may
regard x as having values in C,,, where C,, denotes the field of complex p-adic numbers.

We recall the theory of Dirichlet L-functions.
Definition 2.1.1. For s € C, Res > 1, let

L(sy) = 3 A
n=0

be the Dirichlet L-function.
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Chapter 2. p-adic L-functions

It admits an Euler product expansion for Res > 1

L= [| ——— (21)

b mrime L~ X(2)P°

L(s, x) has an analytic continuation to C; this is a meromorphic function, analytic everywhere
except at s = 1 for y = 1, where 1 denotes the trivial character.

The p-adic L-function L,(s, x) is a p-adic meromorphic function Z, — C, interpolating the
values of L(s, x) at negative integers. In fact, for the interpolation to succeed, we need to remove
the Euler factor corresponding to p in (2.1). This is necessary because the p-Euler factor behaves
badly when it comes to being p-adically continuous.

For x = 1, an avatar of this phenomenon is given by Kummer’s congruences

(1-p")a-r)=(1 —p”l)((l —7") mod p"

for n,r,7" e N, (p—1){r, r =" mod (p — 1)p™. This is connected to the definition of the p-adic
zeta function, of which L,(s, x) is a generalisation.

Let w: (Z/pZ)* — 7} denote the Teichmiiller character.

Theorem 2.1.2. There ezists a unique p-adic meromorphic function L,(—,x) : Z, — C, such
that for all r € N,

Ly(l—=r,x)=(1—xw " (p)p" ") L1 —r,xw™") O

Uniqueness comes from the set {1 —r | » € N} being dense in Z,. It is easily seen that for an
odd character x, the p-adic L-function L,(s, x) is identically zero.
Definition 2.1.3. Let x : Gal(Q(pp=)/Q) — Z,) be the cyclotomic character, defined by ¢(¢) =
¢*) for all o € Gal(Q(up=)/Q), € € pipn, n = 1.

Then x respects the following direct product structures on the domain and codomain:

Gal(Q(pp=)/Q) ~ Gal(Q(pp= ) /Q(1p)) x Gal(Q(uyp)/Q) =T x A
Z; ~ pip-1 % (1 +pZy) =~ (Z/(p — 1)Z) x Zy

In particular, x sends the fixed topological generator v of I' to a topological generator of 1+ pZ,,.

The following theorem states that p-adic L-functions are Iwasewa functions, meaning that
they are obtained by plugging x(y)® — 1 into a power series. As explained in [Was97, p. 243],
power series correspond to measures, thus the following statement also has a measure-theoretic
interpretation, which we won’t discuss here.

Theorem 2.1.4. There exists a unique element Gy (T') € Frac(Zy[x][T]) such that Ly(s,x) =
Gy (k(7)® —1). Forf # 1,p™ for n = 2, we have Gy (T) € Z,[x]|[T]. Here Frac denotes the field
of fractions, and Z,[x] is the ring extension of Z, obtained by adjoining the values of x. O

In Chapter 3, x will be a character of A ~ (Z/pZ)*, thus G, (T) will be a power series
whenever y # 1. One form of the Ferrero-Washington theorem, referenced in Remark 1.2.3,
states that in this case, at least one coefficient of the power series G, (I") does not lie in the
maximal ideal of the discrete valuation ring Zy[x], and is therefore not divisible by p.

This section is based on [KKS12, §10.1] and [Was97, Chapters 4-5].
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§2.2. Definition via Stickelberger elements

2.2 Definition via Stickelberger elements

Let N € N, and consider the cyclotomic extension Q(uy)/Q. There is an isomorphism of groups

Gal(Q(un)/Q) =~ (Z/NZ)*

(Ua:CN'_’CXI)Ha

Definition 2.2.1. We define

N
ovi= X (530t e QlGal@uun)/Q)

to be the Stickelberger element of Q(un).

Remark 2.2.2. In the literature, there exist slightly different versions of this definition. This one
will be convenient for defining the p-adic L-function, and also has the advantage of hinting at a
connection with zeta functions: the coefficient 1/2 — a/N is the negative of the value of the first
Bernoulli polynomial By (z) =  — 1/2 at & = a/N, which agrees with the value of the partial
Riemann zeta function with respect to @ modulo N at 0.

Definition 2.2.3. Let

N
vie Y (ca)ont e QlGal@Q(un)/Q),

also called the Stickelberger element by some authors. We call the ideal

Iy = 9N Z[Gal(Q(pn)/Q)] N Z[Gal(Q(un)/Q)]

the Stickelberger ideal of Q(un).

Theorem 2.2.4 (Stickelberger). The Stickelberger ideal In annihilates the ideal class group of
Q(un)- O

Consider the tower of fields Q(ppn) for n > 0. Fix n > 1 for now and let x be a character of
A = Gal(Q(up)/Q) with values in Cp,. Let Qp(x) denote Q, adjoined the values of x. We have

an action of x on the group ring of Gal(Q(uyn)/Q) ~ Gal(Q(ppn)/Q(up)) x Gal(Q(u,)/Q) over
Q given by the map

(=)* : Q[Gal(Q(ppn)/Q)] — @, ([ Gal(Q(pn)/Q)]

a”17(07 T) = Z a’(T,TX(O-)T
o€Gal(Q(pyn)/Qky)) o€Cal(Q(pyn )/ Qptp))
7eGal(Q(ky)/Q) 7eGal(Q(p)/Q)

Let x be not equal to the Teichmiiller character. Then one can show that by applying the above
action to Stickelberger elements, we obtain a projective system

Dy € Zp[XI[Gal(Q(ppn ) /Q(pp))], 1 =1 (2.2)
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Chapter 2. p-adic L-functions

where Z,[x] denotes the ring extension of Z, obtained by adjoining the values of x. This has a
limit
Ve € 1im Z,,[X][Gal(Q(pp ) /Q(1p))] = Zp[X][T]

n

where T = Gal(Qptpe /Q(11,))) = 7.
Theorem 2.2.5. Let Gy -1, (T) := U. Then Ly(s, x) := Gy (k(7)*—1) is the p-adic L-function,

where Kk denotes the cyclotomic character. O

The above method can be generalised for arbitrary Dirichlet characters, not just those of A.
This survey is based on [KKS12, §10.3(d)]. For details and proofs, see [Was97, Chapters 6-7],
Iwasawa’s original paper [Iwa69b], and his Princeton lectures [Iwa72].
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Chapter 3

The Iwasawa main conjecture

In the first section of this chapter we will formulate the Iwasawa main conjecture. Assuming
Vandiver’s conjecture, the main conjecture admits a short proof, this will be presented in Sec-
tion 3.2. In Section 3.3 we will give a brief outline of the proof of the main conjecture, going into
further details in Section 3.4; in these sections we temporarily waive the mathematical rigour in
order to focus on the essence of the the arguments. The proof itself will be given in Sections 3.5
to 3.8.

The aim was to give an account of the main conjecture that is as detailed and self-contained
as possible, by building on the previous chapters. One exception to self-containedness is that we
assume familiarity with the Iwasawa theory of local units. For this, we refer to [Lan90, Chapter 7]
or [Was97, §13.8]. We will also recall the necessary statements without proofs in Propositions 3.7.2
and 3.7.4.

The proof we present is due to Rubin. Our presentation is based on the appendix [Rub90] to
Lang’s book and Washington’s account [Was97, Chapter 15] of Rubin’s proof.

3.1 Statement

We will work with the cyclotomic tower Q(p,n+1) (n = 0), and retain the notations of the
preceding chapters. The statement we are about to make is the Iwasawa main conjecture for
the plus part of these fields. More precisely, the statement will be about y-eigenspaces of certain
Iwasawa modules where x is an even character of Gal(Q(u,,)/Q); the characters being even means
that we are working with the plus part.

On the one hand, the characteristic ideal of an Iwasawa module kills the module by definition:
in particular, this can be applied to the module X, and its orthogonal components e, X. On the
other hand, we may consider the p-adic L-function G,-1,,(T) € A. As explained in Section 2.2,
Gy-1y = V3w = lim9},, where 9, is obtained by applying a x-action to the Stickelberger
element ¥~ . Recall that Stickelberger elements annihilate ideal class groups. The main conjecture
states that these two annihilating objects are essentially the same:

Theorem 3.1.1 (Iwasawa main conjecture, 15 form). For all odd Dirichlet characters x of the
group Gal(Q(u,)/Q) not equal to the Teichmiiller character w, we have Char (ex X)) = Gy -1,A.
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Chapter 3. The Iwasawa main conjecture

Here we see that the main conjecture relates the algebraic object X, with an analytic one,
the p-adic L-function. One may refer to the characteristic polynomial of e, X, as the algebraic
p-adic L-function. Then the main conjecture fits into the Hilbert—Pdlya conjecture which asserts
that zeta functions should arise as characteristic polynomials.

Recall that the p-adic L-function is identically zero for odd characters, hence the restriction
to odd characters y in the statement (x and y~lw have opposite parities). Also recall that the
p-adic L-function is a power series only for nontrivial even characters (Theorem 2.1.4), which is
why we need to exclude the case x = w.

We may give an equivalent formulation for the p-ramified Iwasawa module X4, in place of the
unramified Iwasawa module X. Recall that €2,, = the maximal abelian p-extension of Q(piyn+1)
unramified outside p, and X,, = Gal(£2,,/Q(p,n+1)) the Galois group, with X, being the projective
limit.

Theorem 3.1.2 (Iwasawa main conjecture, 2°¢ form). For all x # 1 even Dirichlet characters
of Gal(Q(up)/Q) we have Char(e,Xy) = Gy (k(y)(1+ 1)t — 1) A.

For the equivalence of Theorems 3.1.1 and 3.1.2 see [Rub90], where these are Theorems 8.1
and 8.9, respectively. The proof given there shows that Theorem 3.1.2 implies Theorem 3.1.1; it
is easily seen that each step can be reversed, proving the equivalence. The proof actually uses
Iwasawa’s theory of adjoints, which is not discussed in [Rub90]; for these details, see [Was97,
§§15.4-15.5]. The even/odd change comes from a Kummer duality type statement.

In this chapter we will give a proof of this theorem; for the proof, it will be more convenient
to consider yet another alternate formulation, for which we need to make further definitions.

Definition 3.1.3. We recall the following notations from the theory of cyclotomic extensions.

1. Uy = {u € Zy[(pn+1]* |u=1mod ({yn+1 — 1)} = the local units of Q(u,n+1) congruent to
1 modulo the maximal ideal ((,n+: — 1), also referred to as the group of principal local
units;

E,, := Z[Cyn4+1]™ = the global units of Q(fi,n+1);

Cr i= ((pr+1,1 — Cpn |1<a<p"—1)n E, = the cyclotomic units of Q(s,n+1);

E,, := the closure of E, n U, in Up;

C,, := the closure of C,, " U,, in Uy;

For all the above as well as X,,, we will use the index o0 to denote the projective limit taken
with respect to the relative norm maps, e.g. X, = lﬁlf{n We also let X, = LLHAn- (The
notation Ay, is usually used to denote the injective limit of the groups 4,,.)

SOt N

Theorem 3.1.4 (Iwasawa main conjecture, 3rd7form).7F0r all even Dirichlet characters x of
Gal(Q(u,)/Q) we have Char (eyXo) = Char (eyEo/exCop).

We postpone checking that the Iwasawa modules of which characteristic ideals are considered
are indeed finitely generated torsion modules to Section 3.7.

Claim 3.1.5. Theorem 3.1.4 implies Theorem 3.1.2 (and hence Theorem 8.1.1).

Proof. Consider the following two exact sequences; the first one comes from Corollary 1.3.6, the
second one is self-defining.

0— eyUsp/exEyp — exXep = e, Xop — 0

0= exEu/exCox — e,Us/exCo — e Us/ex By — 0
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§3.2. Relation to Vandiver’s conjecture

These together with Lemma 1.1.13, which asserts the multiplicativity of characteristic ideals in
exact sequences, give the following:

Char (e,Xs) = Char (e, U /ey Eo) Char (e Xo) multiplicativity for (3.1)
= Char (eXUw/eXFQO) Char (eXEm/exéoo) Theorem 3.1.4
= Char (e, Uy /e, Cs) multiplicativity for (3.2)
=Gy (k()A+T)"=1)A [Lan90, Chapter 7, Theorem 5.2]
This finishes the proof. O

Remark 3.1.6. Note that our 3" formulation of the main conjecture concerns all even Dirichlet
characters x, including the trivial character 1. This special case, however, will be treated separ-
ately from the case x # 1 in Section 3.8.1, and has a rather straightforward proof as compared
to the much more complicated x # 1 case, the proof of which occupies most of this chapter.

Remark 3.1.7. In the beginning of this section we gave a heuristic motivation via killing Iwasawa
modules. A more historically correct approach is viewing the main conjecture as the analogue
of the rationality of the zeta function of a curve over a finite field. This analogy is outlined in
Appendix A.3.

The characteristic ideal is a rather rough invariant: for instance, the modules A/(a) ® A/(b)
and A/(ab) have the same characteristic ideal. It stands to reason to raise the question whether
there is a finer version of the main conjecture. Vandiver’s conjecture implies a strengthening,
see Section 3.2. Kato [Kat07, §2.3.5] states that Kurihara devised a method in which multiple
p-adic L-functions are used simultaneously to obtain more data about the A-module structure.
Furthermore, using p-adic modular forms, Sharifi made a conjecture that can be understood to
be a refinement of the Iwasawa main conjecture [Shal8, Conjecture 5.5.2]. Finally we mention
that in all known cases, the characteristic polynomial of e, X has no double roots, and this
leads to a rather elementary proof of the main conjecture [KKS12, §10.3(d)].

3.2 Relation to Vandiver’s conjecture

Conjecture 3.2.1 (Vandiver). p does not divide the class number of Q(u,)".

We will now show that Vandiver’s conjecture implies a stronger version of the 3'¢ form of
Iwasawa main conjecture. The proof we present is from [CS06, Proposition 4.5.3]; for a proof of the
2°d form, see [Was97, Theorem 10.16]. In Appendix A.3 we will discuss a heuristic interpretation
of the main conjecture assuming Vandiver’s conjecture.

Definition 3.2.2. We define the plus parts of the global and cyclotomic units defined in Defini-
tion 3.1.3. In the direct sums, x runs through all even characters of Gal(Q(u,)/Q), and projective
limits are taken with respect to relative norm maps.

1. E: = (‘BexEn =FE,n Q(N;+l)+

2. O i= @eyCh = Cp 0 Quith)*

3. E, := @eyE, = the closure of Ef AU, in U,
4. UZ = @ e, C, = the closure of C;} " U, in U,
5. By = @eyEo = imE,
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Chapter 3. The Iwasawa main conjecture

6. 6; =PeCop = liné:b
Theorem 3.2.3. Suppose Vandiver’s conjecture holds. Then we have X4 = 0 and F;/@; =0.

Proof. Recall that A,, denotes the p-part of the class group of Q(ju,n+1). Vandiver’s conjecture
asserts that Ag = 0. Then Lemma 1.3.3 states X = @An = 0, proving the first assertion.

For the second assertion, recall the analytic class number formula, (one form of) which states
that (E; : CF) = #ClQ(upn41)*. This class number is prime to p by Vandiver’s conjecture
and Lemma 1.3.3. Thus we have a short exact sequence

0 — C} — E — (finite group of order prime to p) — 0
Therefore the same is true after taking intersections with U,:
0—C'nU, — E nU, — (finite group of order prime to p) — 0

Now tensor this exact sequence of abelian groups by Z,; this is an exact functor because 7Z, is
flat over Z. The cokernel is killed, and we obtain an isomorphism

(CHnU,)®Zy, = (Ef nU,) ®Z, (3.3)

Recall that Leopoldt’s conjecture holds for totally real fields and states that rkz, EZ =
rkz(E;F nU,). It follows that (E;f nU,)®Z, = EZ and (C;y nU,)®Z, = 6;. Therefore (3.3)
proves 6: = E:: for all n > 0. Taking projective limits yields the second assertion. O

3.3 Outline of the proof

The proof of Theorem 3.1.4 will go as follows. Let e, Xo, ~ @le A/f;A; then the characteristic
polynomial of e, X, is f, = f1 - fr (warning: the character x is suppressed in this notation for
brevity’s sake). Let h, be the characteristic polynomial of eXEOO /exéw. Theorem 3.1.4 states
that f, and h, agree up to a unit of A, that is, fy A = hyA.

For x = 1, the proof is simple, and uses only the class number formula, Leopoldt’s conjecture,
and Lemma 1.3.3; this case is treated in Section 3.8.1. For y # 1, we need much more elaborate
techniques, which we discuss now.

It is, in fact, sufficient to prove that f, | h,. The proof that this seemingly weaker statement
already implies fy,A = h, A will use Iwasawa’s theorem on the growth of an Iwasawa module
(Theorem 1.2.14) as well as the analytic class number formula and Leopoldt’s conjecture. (See
the beginning of Section 3.8.)

The proof of f, | h, will be done by finite induction: we will prove fi---f; | n*1h, for
i =1,...,k where the n-factor comes from a technical difficulty. Notice that h, already appears
in the base case. For i = k, we get f, | nk+1hx; luckily the n-factor can then be removed and we
get fy | hy, as desired.

The technique used in the induction step is as follows. Using the structure theorem of finitely
generated A-modules, we can represent f; by an ideal class ¢; (defined in Lemma 3.7.10) and h,,
by a morphism 1 (defined in (3.30) for ¢ = 1 and (3.31) for 2 < ¢)—we will refer to this as the
first conversion step. Using heavy machinery from algebraic number theory, we will construct an
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exXo;X;G-lzf z/fiA ’ . [(ar) Euler system}

hy
structure mod M,
theorem

[(m) inductive property}

Chebotaryov
density
()= (nducton)

an—>oo

class number formula l Leopoldt’s conjecture

[Char (exXow) =t fyA = hy A := Char (eXEOO/eXGOO)]

Figure 3.1: A simplified outline of the proof. Concepts with blue background are on the co-level,
the rest are on finite levels.

auxiliary prime \; satisfying properties determined by both ¢; and ¢ (that is, f; and h,); this
will be our second conversion step. This will imply a divisibility relation like fi--- f; | n°*1h,.

Actually, there is one more factor on the left that facilitates the induction. This has to
do with cyclotomic units. We will encode the cyclotomic units in the precise formulation of
the divisibility condition and in the construction of 1 in the base case. The way we do this
constitutes a crucial part of the proof: we will use an Euler system («,) for the cyclotomic
units, introduced in Section 3.5. For our purposes, one may think of the Euler system as a
set of cyclotomic units admitting some nice properties that make it well fit to use in inductive
arguments (Proposition 3.5.5).

Remark 3.3.1. Another proof of the main conjecture, using modular forms, was given by Mazur
and Wiles. They proved the converse divisibility h, | f,. This underlines the point that the
‘luxury’ of only proving one of these divisibility relations is due to the presence of the analytic
class number formula, an analogue of which is not available in more general setups, thus neces-
sitating the usage of both Euler systems and modular forms. For an outline of the proof using
the modular form method (and the necessary background), see [Shal8, §4.3].

3.4 Technical details of the proof

In this section we will elaborate further on what actually goes into the proof of the main con-
jecture. Figure 3.1 shows the general strategy, while Figure 3.2 details the steps in the proof.
In the latter figure, in order to keep things as simple as possible, all arrows coming out of Pro-
position 3.7.2 are represented by just one dotted arrow. Within the Iwasawa theory part, the
structure theorem of finitely generated A-modules is used extensively; this is also not shown in
the figure.
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of Kolyvagin derivatives
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T
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Kolyvagin derivatives
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A

Kolyvagin derivatives |
(Proposition 3.5.8) )

L

technical lemma
(Lemma 3.5.7)

f Properties of the )
Euler system
(Proposition 3.5.5)
\_ J

A

general theory of Euler systems

g . . )
telescoping identity
(Lemma 3.5.3)
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real cyclotomic units
(Proposition 3.5.4)

Euler system
Section 3.5

F = By A
(main conjecture)

growth of modules
(Lemma 3.8.2)

..

F [y

A

lwasawa's theorem
(Theorem 1.2.14)

growth of the modules
(Lemma 3.7.14)

first conversion step
(Corollary 3.7.11)

encoding e, X
as ideal classes

encoding the cyclotomic

"~ (Lemma 3.7.10)

units as a morphism
(Lemma 3.7.9)
A J

controlling the passing
for the units
(Lemma 3.7.6)

(Lemma 3.8.1)
~ @@

second conversion step
(Proposition 3.6.1)

A

Chebotaryov
density theorem

I

Kummer theory

Kronecker—Weber
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class field theory

algebraic
number theory
Section 3.6

T
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(Proposition 3.7.4) ]
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Iwasawa modules
(Proposition 3.7.2)

A
Iwasawa theory
of local units

class field theory
of Z,-extensions
(Section 1.3)

lwasawa theory
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Figure 3.2: A complete outline of the dependencies of steps in the main conjecture’s proof.
Arrows mean that one concept is used in the proof of the other. Concepts with grey background
are considered to be prerequisites for the proof.
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Let us first detail the part of the proof taking place on finite levels.

We begin with the Euler system. We will explicitly define a set of cyclotomic units (cv.)
where r will run over some subset S of the rational integers. These (a,.) will enjoy two key
properties: a7 will generate the real cyclotomic units (Proposition 3.5.4), and the system («.)
will satisfy the property of being an Euler system (Proposition 3.5.5). Euler systems, in general,
are cohomological objects obeying a generalisation of Proposition 3.5.5, and there is a whole
theory of their properties in this high generality. We will need to build up some of this theory
in our case: this will be done in Lemma 3.5.7 and Propositions 3.5.8 and 3.5.9. Since these
statements constitute part of a general theory, the explicit definition of («,.) won’t matter, just
the fact that it is an Euler system. While all these statements have a deeper cohomological truth
to them, neither the assertions nor their proofs will be done in cohomological terms, save for the
proof of Proposition 3.5.8, which uses Hilbert’s theorem 90.

More precisely, the part of the theory of Euler systems we need is the notion of a Kolyvagin
derivative (k,) associated with (a;.). This can be thought of as modulo M,, instance of the
Euler system («,.) where the modulus M,, will be chosen later. The reason for considering these
derivative classes is that this will allow us to obtain some results about their valuations over some
primes (Proposition 3.5.9), which will be well suited for use in an induction. We have no such res-
ults for (). We will restate these results in terms of valuations and indices (Proposition 3.5.13);
this is the form we will use in proving f, | hy.

The second conversion step given in Proposition 3.6.1 is a rather technically loaded part
of the proof: we will need the full arsenal of algebraic number theory. What happens here is that
given an ideal class ¢; and a morphism ¥, we want to find a prime \; € ¢; satisfying some nice
property with respect to ¢. The prime will be given by the Chebotaryov density theorem (so
in fact, there will be infinitely many such primes) applied to some large field extension. This
extension has to, on one hand, encode ¢;, which can be done via class field theory. On the other
hand, we also need to encode the morphism ), for which Kummer theory will prove to be an
effective tool. During these steps, there will be several technical details to attend to; at one point
we will also need to invoke the Kronecker—Weber theorem.

Now we discuss the steps that have to do with the co-level. The most important part Iwasawa
theory plays is encoding fy and h, so that we may do induction on finite levels. In order to do
this, we need to describe the behaviour of several Iwasawa modules. Some information has already
been obtained in Chapter 1. We will also need the Iwasawa theory of local units as described
in [Lan90, Chapter 7, Theorem 5.1]. These statements will be recalled in Propositions 3.7.2
and 3.7.4, and can be treated as blackboxes.

In particular, we will describe the natural maps from the oco-level to finite levels. For all but one
of the Iwasawa modules involved, these will be as simple as can be, that is, we will have natural
isomorphisms. The only exception is E.,, where all we can say is that the natural morphism has
finite kernel and cokernel (Lemma 3.7.6). This will manifest in the technical difficulty that when
we encode h, as a morphism (Lemma 3.7.9), an n-factor will emerge, which will represent the
annihilator of the aforementioned kernel and cokernel. This is the 7 that was mentioned in the
previous section.

Finally we will need a lemma about the growth of the modules involved (Lemma 3.7.14), one
application of which will be choosing the modulus M,, for the Kolyvagin derivatives in terms
of n. The proof of f, | h, will then be done by putting all the previous results together: our
first conversion step Corollary 3.7.11 turns f, and h, into objects on the n' level so that our
second conversion step can be applied. The fact that «; generates the real cyclotomic units
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establishes a connection between the Euler system and h,, and the result Proposition 3.5.13 on
Kolyvagin derivatives makes the induction work. Finally letting n — o0 makes M,, — o0, making
our modulo M,, results hold on the oco-level. The n-factor can be removed either through two
opportune choices of 7 or by invoking the Ferrero-Washington theorem.

To prove that f, | hy implies fyA = hyA, we will use a simple consequence of Iwasawa’s
theorem (Lemma 3.8.2), which will be applicable as per the result on the growth of the modules
involved. Then the analytic class number formula and Leopoldt’s conjecture finish the proof.

3.5 An Euler system for the cyclotomic units

We begin by fixing some notation. As always, p will be an odd prime. We will be working on
the n't level of the Z,-extension Q(uy=)/Q(u,), n € N. In order to emphasise this, most of our
notation will feature the level n. In the present and the next section we will not be considering
any other levels. Let F,, = Q(upn+1)* and G, := Gal(F,/Q). In what follows, ¢ will always
denote a rational prime. Let

S = {r € N‘r square-free, £ | r = ¢ =11 (mod p”*l)}

Thus S is the set of positive integers that are a product of distinct primes, all of which split in
F,/Q. Fix M, € N to be an odd integer (to be chosen later as some large power of the odd prime
p, also depending on n), and define a mod M, version of S:

S, = {TES‘E‘Tﬁle (modMn)}

Remark 3.5.1. The reason we will be working modulo M,, later is that this will enable us use the
theorems about M powers and M" roots of unity in field extensions (e.g. Kummer theory).
These will play a substantial role in proving Propositions 3.6.1 and 3.5.9.

While it may seem that we lose information in the modulo M,, reduction, this is not exactly
the case. At the very end of the proof of the Iwasawa main conjecture (Section 3.8.2), we will
set M,, := p"*N (for some N € N), and let n range over N. We will obtain divisibility properties
modulo M,, for all n, which will together give a divisibility relation without any reduction.

Remark 3.5.2. We will sometimes use additive notation in the multiplicative group F,(u,)*, as
is standard practice. While this notation may be admittedly confusing, it saves us from using
several levels of exponents, thus—hopefully—making our computations easier to follow.

Let r € S and G, := Gal(F,, (i) /Fp) ~ Gal(Q(u,)/Q) ~ (Z/rZ)*. For £ = +1 (mod p"T1),
the group G, ¢ is cyclic; let oy be a fixed generator. Let

N, := Z o€ Z|Gnr] (3.4)
oceGy,r

denote the relative norm in the extension F,(u,.)/F,. Further define the derivative operators

{—2
Dy := Y i} € Z[Gpny] and D, :=[[DseZ[Gy,] (3.5)
i=1 L|r

The derivative operators will only be used later, when we start working modulo M,; they will
give rise to the Kolyvagin derivative of our Euler system.
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Lemma 3.5.3 (Telescoping identity). (o — 1)Dy = (¢ — 1) — Ny.
Proof. This follows from the definitions (3.4) and (3.5):

(00— 1)Dg = (00 — 1) Z io}

Z (o)™ — io})
=(—2)0i "~ 2 o

(-1 2 o

:(@-1)_1\14 0

For r € S define

Qp 1= Cpn+1 <HC@> -1 Cp_n1+1 (HCZ) -1
Lr

Lr

where (,n+1 and the (;’s are fixed primitive (p"*!)'" resp. ¢ roots of unity. These numbers a,.
form a so-called Fuler system. The properties of this system will be given in Propositions 3.5.4
and 3.5.5. There is a key distinction between the natures of these two propositions. The former
is about this particular Euler system; it will be used towards the end of the proof of the main
conjecture. It will enable us to establish a connection between the Euler system and the Iwasawa
module of cyclotomic units, and thus h,. This will be beneficial because it will allow us to
use the general theory of Euler systems, which is what Proposition 3.5.5 and the subsequential
statements of this section are about.

In general, an Euler system is a collection of cohomology classes satisfying conditions similar
those in Proposition 3.5.5. Rubin [Rub00] gives a general treatment of Euler systems, and all
statements in this section after Proposition 3.5.5 can be found there, albeit in vastly larger
generality (and hence much longer proofs). (For a quick survey on what Euler systems represent
in different settings, see [Kat07, §2.5].)

Proposition 3.5.4. For all nontrivial even characters x of A, eyay generates the ey Ar, =
exZp[IP" ] = ey Zp[Gal(Q(pp» ) /Q(ptpn+1))]-module ey, C,.

Proof. By definition, a; = ((pn+1—1) (C;,Ll —1). The group C,} of cyclotomic units of Q(pn+1)™
is generated by —1 and the elements

_Czn+1 1 < < ]. n+1 »f .
T 9<3p"" g

B = C(n-%—l
see [Was97, Lemma 8.1]. Let 0, € Gal(Q((pn+1)/Q) be defined by oy ((pn+1) = anH. Then we
have (o, —1)ay = (14+0-1)5,. It is easily checked that 8, = 0_1/3,, thus we obtain (g, —1)as =
ﬁ;. So far we have been working in the group C;F. It follows that in the Ar, -module C,, we have

1(0g — 1)ay = B34 as 2 is invertible in A, . The assertion then follows using that x is even. [
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Proposition 3.5.5 (Properties of the Euler system). For all r € S and ¢ | r we have the
following:

(1) ar € Fp(p)*.

(2) a, is a cyclotomic unit if r > 1.

(3) ar = ay; modulo every prime above (.

(4) Neay = (Frg —1)ay. 0 where Fry denotes the Frobenius of £.

Proof. The first two assertions are easily seen. For (3) one only needs to observe that {, = 1
modulo all primes above £. It remains to show (4).

Ny Cpn+1 (HC{]) — 1N, 1;114—1 (HCQ) -1
qlr

qlr

NEOZT

Il - <pn+1<1_[<q>1 I1 - gpm(ng) .

TEGHJ q‘r TEGnvg q‘r

-1 £—1
] c;jcpnﬂ(ch) -] ]]¢ 1;1+1<H<q> -1 (3.6)
i=1

i=1 aly aly
A B
IS (GA-1) TLS (¢B—1)
A—-1 B—-1
=,44—1_194—1 3.7)
A—-1 B-1 ’

B Cﬁnu Hq‘% Cﬁ -1 C,jfﬂ qu% Cﬁ -1

B Cpnt1 Hq‘% G —1 . Cp_n1+1 qu% G—1

= (Fre —1)ay (3.8)
In (3.6) we used that 7((yn+1) = (pn+r and Vg # £ @ 7((;) = (4. The last step (3.8) uses

¢, = gg}ﬂ and gp—nﬁl = g;}ﬂ which hold since £ = +1 mod m. The step (3.7) follows from

the following lemma:

Lemma 3.5.6. Let p be a prime, 1 a primitive p™ root of unity. Then in any field F' containing
Q(up), the following holds for any X € F':

1
(X -1)=Xx"-1
0

P

%

Proof. This is immediate from the factorisation of X? — 1:

p—1 p—1 p—1
XP-1=[](X=9) =] "' X 1)V =[] (f'X = 1) -1 O

i=0 i=0 i=0
This finishes the proof of Proposition 3.5.5. O

From now on until the end of this section, it won’t matter how our Euler system «, was
defined, just that it satisfies the properties listed in Proposition 3.5.5.
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§3.5. An Euler system for the cyclotomic units

We will now start working modulo M,, (q.v. Remark 3.5.1). In Proposition 3.5.8 we will
introduce mod M, representatives k, of c,.. The advantage of these is that we will be able to
describe their valuations mod M, in Proposition 3.5.9.

Gn,r
Lemma 3.5.7. For r € Sy, we have D,a, € (Fn(ur)x/(Fn(uT)X)M") , i.e. Dy is fized
under Gy, up to beh powers.
Proof. We do induction on the number of prime factors of 7. For r = 1, the statement is trivial

as G = 1. For the induction step, let r = £- 7. Keep in mind that we are using additive notation
in the multipicative group F, (u,)*.

(0 —1)Dyay. = (00 — 1)DyD, oy definition of D,
= ((£—1) = Ng) Dy ey Lemma 3.5.3
= ({ =1)D, /0 — Dy jyNyav, D,/ and Ny commute

The commuting of D,/ and N, follows from their definition and (r/¢,£) = 1; in particular,
we use that r is square-free. Observe that the first term (¢ — 1)D,p, is an M power since
¢ =1 mod M, For the second term, we have

D,/ Nea, = D, (Fre —1) a4 Proposition 3.5.5.4
= (Fre —1)D, 0t/ (Frg —1) and D,.;, commute

D, /o0, is an ME" power by induction, and M powers are preserved by (Fr;—1). Thus (op —
1)D,q, is an M® power. Since G,, , = {Gyr/t,0¢), this finishes the proof. O

Proposition 3.5.8. For every r € Sy, there is a unique k, € an/(FJ)M” for which k, =
M,
D,a, mod (F,(p)*) ",

Proof. This can be seen using Galois cohomology: we may define &, to be the image of D,.«,
under the following composition of isomorphisms:

Fn(ﬂr)x " ~ =1 Gn,r o~ =1 ~ X
— — H' (Fp/Fo(pr), par,) " = H (F/Fybin,) < —oxar
((Fn(NT)X)Mn ( ) ( ) (Fvi()M"

Drar } Ry

The first and last isomorphisms come from Hilbert’s theorem 90 [Ser02, 11.§1.2]. The isomorphism
in the middle comes from the inflation—restriction exact sequence (aka the Hochschild—Serre
spectral sequence):

Gal(Fpn/Fr (pr - — G r
0= B () /By S0 0) o HY (B B o) = H (BB, iag,)

Gal n/Fn (o Sal
g2 (Fn(llr)/FnaUMnl(F /Fn (1 ))) 2 (Fn/FmMMn)

Here H* (Fn(ur)/Fn,u%ﬁ@“/Fn(“m) = 0 for i = 1,2 (recall that M,, is a power of p, and r is

prime to p), which gives us the isomorphism above. O
The collection of these &, is called the Kolyvagin derivative of the Euler system . (cf. [Rub00,

§4.4]). In the upcoming Proposition 3.5.9, we will need a more explicit description of &..; for this,
we make the construction more direct.
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n(phr) N

F,
/ total
F(pee) \ ramification

Fo(prse) N o Fo(pese)

(o¢) / ‘

F, A
|
14

Q

Figure 3.3: Objects in the proof of Proposition 3.5.9: fields on the left, prime ideals on the right

Proof (Second proof of Proposition 3.5.8). Consider the cochain

Gn,r = Gal(Fn(Nr)/Fn) g Fn(:ur)x
o ((0 = 1)Dyay)/Mn

This cochain is well-defined by Lemma 3.5.7, and it is easily seen to be a l-cocycle. As the

cohomology group H'(F,,()/Fn, Fn(pr)*) = 0 is trivial, there is some S, € F,(u1,)* (unique
up to F*) satisfying
(U - 1)67“ = ((U - 1)Drar)1/Mn (3'9)
for all o € G, . Then
D,a,
e i= o (3.10)
satisfies the conditions of Proposition 3.5.8. O

The following is a key result about Kolyvagin derivatives; it corresponds to Theorems 4.5.1
and 4.5.4 in [Rub00]. (Rubin’s somewhat obscure way of phrasing it [Rub90, Proposition 2.4] is
made explicit in [CS06, §5.4] and in [Was97, Proposition 15.12].)

Recall that we fixed a generator oy of Gy, = Gal(F,,(10)/F,) ~ (Z/CZ)*. There is a mod ¢
primitive root = associated with o,, meaning that o,(¢;) = (7 where (; is the previously fixed
primitive /'" root of unity.

Proposition 3.5.9 (Kolyvagin). Let r € Spy, , £ a rational prime, \ a prime of F,, above £. Then

(1) If M r then ordy(k,) = 0 mod M,, where ordy denotes the A-adic valuation.
2) If A| r then ordy(k,) = —a mod M,, where K./, = x® mod A for a € Z, and x is the mod ¢
/
primitive root associated with oy.

Remark 3.5.10. Note that this statement depends heavily on fixed choices. If we change our
choice of gy, then x changes as well, but so does the derivative operator D,., and consequently,
the image k, of D,.«,.. If we change our choice of (;, this also affects x, but it alters a,. too, and
therefore D, «, and thus x, as well.

Proof. First suppose A { r. Then by Lemma 3.5.7, D,«, is a unit in F),(u,) thus (3.10) yields
(k) = (B71)Mn as ideals of F,(u,). Since X is unramified in F},(u,.)/F,, this proves ordy(k,) =

I

0 mod M,.
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§3.5. An Euler system for the cyclotomic units

Now let A | r and fix a mod ¢ primitive root 2. Then 2 is a primitive root mod A as well, so
we can indeed write #,/, = £* mod A for some a € Z. Let A" be a prime of F, () above A; then

x is still a primitive root mod A’ so we have D, pa, ), = 2% mod X for some o € Z. By (3.10) we
have

a=d (mod M,) (3.11)

Now by a calculation similar to that in the proof of Lemma 3.5.7:

(00— 1)By = (00 — 1)Dyay/Mn by (3.9)
= (00 — 1)D¢D, jgr/ M by (3.5)
=({-1- N[)Dr/g()é},/M" Lemma 3.5.3
= DT./gag_l)/M" — DT/ZNzai/M” D,/ and Ny commute

By Proposition 3.5.5.4 we have Nga}ﬂ/M” = (Fry fl)a}ﬂ/M”. Since ¢ = 1 mod M,,, this means

Nya/M* = 1. Thus

(00 = 1)B = Dyl =DM

= Dr/eag;l)/M" by Proposition 3.5.5.3

mod all primes above £. Hence (o¢ — 1)3, = 2° mod X’ where
b:=d{l—1)/M, (3.12)
Also let
c¢:=ordy G, (3.13)
Since (1 — ¢¢) is a uniformiser, i.e. ordy (1 — {¢) = 1, we have 8, = (1 — {y)°y for some N -unit
y € F,(pr) (i.e. ordy y = 0). Then we have
2= (0 —1)8, = ((1 - Ce)wfl> vt = 2° mod N (3.14)

To justify the last congruence in (3.14), we need to make two simple observations. First, by
definitions of o, and =

1—(f

1=

T+ G+G+. .+t
=1+[¢G-U+[G-1]+...+[¢ " =1+ (x—-1)

=2 mod X\

(00 —1)(1—¢)

Here the last step uses that the expressions in square brackets are all divisible by ({, — 1) € X.

Secondly, we have o,y = y mod X\ since o, is in the inertia group of X as this is totally
ramified in F, (g )/ Fp (pr/e)-

Now (3.14) implies
b=cmod (-1 (3.15)
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Therefore
ordy K, = 7 ordy K A=)t

1 _

= m Ord)\’ (5%”) (K’T) = (/37‘ 1)M"L
—M, .

=5 lc definition (3.13) of ¢
—M,b

= by (3.1
1 y (3.15)

E— definition (3.12) of b

= —q mod M, by (3.11) [

Proposition 3.5.9.2 establishes a connection between valuations and indices of Kolyvagin
derivatives in the following sense.

Definition 3.5.11. As before, let « be the mod ¢ primitive root associated with o,. Let w € F
be coprime to £ and A a prime of F,, above £. Then for any o € G,, = Gal(F,,/Q) define the indez
indyywe (Z/(¢ —1)Z) by

xindgk(w)

w = mod o\

It will prove useful to extend this connection to valuations and indices of all Galois conjugates
of a prime \. To this end, we make the following definitions.

Definition 3.5.12. We define the collections of valuations and indices as follows:

ordy(w) :== Y. ordgr(w)o € Z[Gy]

oeGp

ind(w) := ) indy(w)o € (Z/MyZ)[Gh]

oeGp

The operators ordy and indy thus collect information about how w behaves with respect to
all the primes above £. We have the following proposition.

Proposition 3.5.13.
E)\ (exnér"&) = 7@)\ (exﬁh-%iq) mod Mn

Proof. Follows directly from Definition 3.5.11 and Proposition 3.5.9.2 and the fact that every
expression involved is Z[G,,]-linear. O

Proposition 3.5.13 is how we will ultimately make use of the nice properties of the Euler
system in the proof of the main conjecture.

3.6 The second conversion step

We continue dealing with objects that live entirely on finite levels. The first conversion step,
which logically precedes the topic of the present section, will be therefore discussed later, as its
point is transforming objects from the oo-level to the n'" level (Corollary 3.7.11).
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§3.6. The second conversion step

Note that up until now we have not made any assumptions about M,, other than it being
an integer. In the upcoming Proposition 3.6.1 we will already assume that M, is a power of an
odd prime, but M,, will only be explicitly chosen towards the end of the proof of the Iwasawa
main conjecture (q.v. Remark 3.5.1). The following Proposition 3.6.1 will be the tool used in
each inductive step in the proof of the main conjecture.

Proposition 3.6.1. Let p be an odd prime, A := (ClF,,)®zZ, the p-part of the ideal class group
of F, = Q(ppn+1)", c € A an ideal class, M, a power of p, W a finite G, = Gal(F, /Q)-submodule
of FX/(FX)Mn and

VW — (Z/M,Z)[G,]

a Galois-equivariant map. Then there exist infinitely many primes satisfying the following four
properties:

(1) Xeg;

(2) £=+1modm and £ =1 mod M,, where { is the rational prime under \;
(3) Ywe W:ordyw = 0 mod M,;

(4) ue (Z/M,Z)* : indy(w) = up(w).

Remark 3.6.2. Proposition 3.6.1 will be used in the proof of the Iwasawa main conjecture to
inductively choose primes A; (q.v. Remark 3.7.12). We won’t actually need the fact that there
are infinitely many such primes A, just that there is at least one, but as it will be evident, the
natural way of proving this already yields the existence of infinitely many A’s. The ideal class
¢ will come from factors f; of f,, the homomorphism 1 from h,. Properties (1) and (4) thus
assert that A; represents both f; and h,. The point of property (2) is that ¢ is a prime factor in
the indexing set Sy, of mod M,, Kolyvagin derivatives. Property (3) is only technical, asserting
that it is valid to consider indices on W as we do in (4).

Remark 3.6.3. Proposition 3.6.1 can also be found in [Rub87], with a simpler version being
present in [Tha88]. Greither [Gre92] gives a variant of Proposition 3.6.1 that is also valid for
p=2

Proof. The proof is based upon Chebotaryov’s density theorem, which we recall now [Lan86,
Chapter VIII, §4, Theorem 10].

Theorem 3.6.4 (Chebotaryov). Let K/k be a finite Galois extension of degree N with Galois
group G, let 0 € G, and let s be the number of elements in the conjugacy class of o. Then the
primes p of k which are unramified in K/k and above which there is a prime B | p such that
o = (P, K/k) have density s/N. In particular, there are infinitely many such primes. O

In view of this, what we need to do is find an extension of F, the Galois group of which
encodes all the data in the setup of Proposition 3.6.1. Then the lambdas will be obtained by
applying Theorem 3.6.4 to a suitably chosen element of this Galois group.

Let H be the p-Hilbert class field of F),; then A ~ Gal(H/F,) by class field theory. Now
consider Figure 3.4; HE,(juar, , WYMn)/F, will play the role of K /k in Theorem 3.6.4. We now
verify that this is the composite of the extensions H/F,, and F, (s, , WYMn)/E,,. This will allow
us to choose an element of Gal(HF,,(upr,, WY/Mn)/F,) that has suitable restrictions to H and
Fn(:uMn ) Wl/Mn)'

Claim 3.6.5. F,(up,) " H = F,

Proof (Proof of Claim 3.6.5). The extension Fy,(ua,) N H of F,, = Q(un)t is abelian. By
the Kronecker—Weber theorem there is some N that is a multiple of p"*! and F,(upr, ) 0 H S
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HFTL(,L"MWJ Wl/Mn)
\
Fn(p’Mna Wl/Mn)
H |
a

N Fo(par,,)
S
/
F,
|

Q

Figure 3.4: Field extensions in the proof of Proposition 3.6.1

Q(un)- The extension Fy,(pas, ) N H/F, is unramified, so by the ramification theory of cyclotomic
extensions, Fy,(par, ) N H is either Q(ppn+1) or Q(pyn+1)" = Fy. Since Q(pupn+1)/Q(ptpn+1)" has
degree 2, it is not a p-extension. Hence we must have F,(uar,) N H = F,. O

Claim 3.6.6. F,(uy, , WYMr) A H = F,

Proof (Proof of Claim 3.6.6). Let 7 € Gal(F,, (1, )/Fr) be the complex conjugation automorph-
ism. Since F,, = Q(ppn+1)T, 7 acts trivially on F,, and since W < F)/(F)M», the action is
also trivial on W. The action on pyy, is by (—1), so it follows that 7 acts by (—1) on the group
Gal(Fy (par,, WM [ Fo(par, ))-

On the other hand, Gal(HF,, (un, )/ Fn(pas,)) ~ Gal(H/F,) by Claim 3.6.5, and therefore
7 acts trivially by definition of H. Hence 7 acts both trivially and by (—1) on the intersection
Gal(Fy, (par,, WYMn) n HFy (e, )/ Fu(pa, ), proving

F, (uMn, Wl/M"> A HE, (uar) = Fo(pa,) (3.16)
Therefore
Fo(par,, WYYy a H = Fy(uar,, W) 0 HF, (uar,) 0 H HF,(par,) 2 H
= Folum,) n H by (3.16)
=F, Claim 3.6.5 O

Claim 3.6.7. Gal(F,,(uns, , WYMn)/F,(uar,)) ~ Hom(W, par, ).

Proof (Proof of Claim 3.6.7). Kummer theory (cf. e.g. [Mill8, Remark 5.31]) gives us a non-
degenerate pairing

Gal(F" (”Mn’Wl/Mn)/Fn(MMn))xW/Ker <W<—> B Fulo)” )_’UMn

(Fr )M (Fo(pa, ) )M

The claim will follow once we show that the kernel above is zero, which is equivalent to proving
that F,, — F,, (s, ) induces

Fy ()M Fo(par, )™/ (Fa(par,) )M
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This can be seen using Galois cohomology; bars will denote algebraic closure.
Ker (F/(F;OM = Fu(an, )™/ (Falpuar, ) ™)
= Ker (Hl (Fr/Fn,par,) — H (W/Fn(uMn), ,uMn)) from Hilbert 90 [Ser02, I1.§1.2]
= H' (F(par,)/F, piar,,) inflation—restriction sequence

In a cyclic extension, 15% and 0" cohomology have the same cardinality, and the latter group is
trivial. O

Define the map
L (Z/MnZ)[Gn] — UM,
Z agg — C}E\L/}n

9eGn

Composing with ¢, we get a map tov) € Hom(W, pay, ). Let ¢ € Gal(Fy, (uag, , WYY /Fy (uar,))
be the associated Galois automorphism given by Claim 3.6.7; by Kummer theory this means

p(w'/ M)

Ywe W : (to)(w) = wl/Mn

(3.17)
By Claim 3.6.6 we may choose an automorphism § € Gal(HFE, (uaz,, WYMn)/F,) such that
6|m = a (under the Artin map of class field theory) and 6| g, (,,, w1y = ¢

Let X be a prime of F;, given by Theorem 3.6.4 with o := J§; we now check that it satisfies
the properties above.

(1) and (2) follow directly from construction. (3) comes from A being unramified.
For (4), we will show that
Ju e (Z/M,Z)* : voindy(w) = u(e o) (w). (3.18)

Then replacing g by g~ 'w and using the G,-stability of W will prove (4). Since both sides of

(3.18) are in upy, ~ Z/M,Z, it is equivalent to proving that the two sides are 1 for the same w’s.
On the left hand side, we have

toindy(w) = ¢ < Z ind(,)\(w)a> = indy (w),

oeG,,
hence the left hand side of (3.18) is 1 iff w is an M" power mod .

For the right hand side, let A’ be a prime of F, (s, , WMn) above A for which Fry = ¢.
Then

1/M,
Loh(w) =1 %:1 by (3.17)
— Fry w!/Mn =/ Mn

— wis an M power mod N ~ F, (s, )

— w is an M power mod A

The last equivalence holds because ¢ splits completely in F,,(uar, )/Fn by (2). This concludes the
proof of (4), and thus the proof of Proposition 3.6.1. O
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3.7 Results using Iwasawa theory

So far we have focused on the field F,, = Q(p,n+1)*. We will now make use of Iwasawa theory:
to do so, we will be looking at an infinite tower of fields, use results from Iwasawa theory to
obtain information about the co-level of this tower, and then translate this information to the
finite levels.

So consider the tower consisting of the fields Q(p,n+1) for n > 0. The ascending union of
these is denoted by
Qi) = | Qi)

n=0

Wiite A i= Gal(Q(i1,)/Q) = (Z/pZ)*, T i= Gal(Q(tp=)/Qtp)) = Zp and Gal(Qyipe)/Q) —
A x T for the Galois groups. We assume familiarity with the Iwasawa theory of local units (cf.
[Lan90, Chapter 7]), but will recall the relevant results in Propositions 3.7.2 and 3.7.4 below.

Definition 3.7.1. We recall the following notations from the theory of cyclotomic extensions.

1. Ay = ClQ(ppn+1) ®z Zy = p-part of the ideal class group ClQ(puyn+1);

2. Uy = {u€ Zy[{pn1]* |u=1mod ({yn+1 — 1)} = the local units of Q(i,n+1) congruent to
1 modulo the maximal ideal ({yn+1 — 1);

E,, := Z[Cpn41]™ = the global units of Q(f,n+1);

1= {Cpr+1, 1= (s |1<a<p"™ —1)n E, = the cyclotomic units of Q(st,n+1);

Q

E,, := the closure of E,, n U, in Up;

C,, := the closure of C,, " U,, in U,;

€2, := the maximal abelian p-extension of Q(fi,n+1) unramified outside p;
X, = Gal(Q,/Q(ppn+1));

© X NSO W

For all the above, we will use the index o0 to denote the projective limit taken with respect
to the relative norm maps, e.g. X = lim X,,, except for X, = Lir_nAn. (The notation Ay
is usually used to denote the injective limit of the groups A,,.)

10. A :=Z,[T] the Iwasawa algebra.

In the proof of the main conjecture, we will need to relate the finite levels of these modules
to the oo-level. The reason for this is the general observation of Iwasawa theory that the oo-
level—which can be thought of as batching all finite levels together—behaves more nicely than
the finite levels on their own. This can be traced back to having an additional tool on the co-level
as compared to finite levels, namely the structure theorem of finitely generated A-modules.

Proposition 3.7.2. In the category of A-modules, we have the following.

(1) ey X is finitely generated and torsion for all characters x;

) exXw is finitely generated for all characters x and torsion for x # 1 even;

) exUx is free of rank 1—in particular, it is finitely generated—for x # 1 even;
) exCo is free of rank 1—in particular, it is finitely generated—for x # 1 even;
) exUs/exCo is torsion for x # 1 even;

(6) exEqo is finitely generated for all characters x.

Proof. We only give references to the proofs.

(1) Lemma 1.3.2
(2) Corollary 1.3.5 and Lemma 1.3.9
(8) [Lan90, Chapter 7, Theorem 2.1]
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Figure 3.5: The cyclotomic tower Q(up»)/Q

(4) [Lan90, Chapter 7, Theorem 5.1]

(5) [Lan90, Chapter 7, Theorem 5.2]

(6) A = Z,[T] is noetherian because Z, is [Stacks, Tag 0306]. Us, is finitely generated over the
noetherian ring A [Lan86, Chapter 7, Theorem 2.1], hence it is noetherian. Since submodules
of noetherian modules are finitely generated, E., is finitely generated. O

Definition 3.7.3. Let I',, := I'"" = Gal(Q(up=)/Q(pzpn+1)) and v € T' be a generator. For any
A-module Y define the I',,-invariants resp. -coinvariants Y= resp. Yy by the exact sequence

(AP 21
oayrnayuyayrn—»o

In particular, Ar, = Zy[T',] = Zp[Gal(Q(ptpn+1)/Q(1p))]-

For Y := Yy, € {Xs,Ux, Ex,Co, X} we obtain natural maps (e, Ye)r, — e,Y, which
describe the relation between the oo-level and the n*" level. The following Proposition 3.7.4
states that the situation is the best possible except for the module E . As for E, we will relate
it to the more well-behaved modules in Lemma 3.7.6.

Proposition 3.7.4. In the category of A-modules, we have the following.
(1) (exXowo)r, — eyxA, is an isomorphism for all characters x;
(2) (exXoo)r,, — eyX, is an isomorphism for x # 1 even;
(3) (exUx)r, — exUn is an isomorphism for x # 1;
(4) (exCo)r,, — exChp is an isomorphism for x # 1 even.

Proof. Again we only give references to the proofs.

(1) Claim 1.2.11 (which can be applied since p ramifies totally in Q(u,)/Q)

(2) Lemma 1.3.9

(3) [Lan90, Chapter 7, Theorem 2.2]

(4) [Lan90, Chapter 7, Theorem 5.1] O
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Remark 3.7.5. Upon first glance, the diversity of conditions on x in Propositions 3.7.2 and 3.7.4
may appear confusing. We will, in fact, only need these assertions for y # 1 even: for x trivial,
the main conjecture admits a simpler proof, discussed in Section 3.8.1.

Lemma 3.7.6. For all x # 1 even, there is an ideal A = A of finite index such that for all
0<n:
AKer ((exBo)y, = exFn) =0, ACoker ((exBu)yp, = exBy) =0,

and the size of these kernels resp. cokernels is uniformly bounded.

Proof. First consider the following commutative diagram with exact sequences as its rows.

Ker /B

= |

Ker ¢,, — (exUOO/exEOO)pn —= (exXo)p, — (exXoo)p, — 0

[rome 0| |-

0——— eXUn/eXEn exXy exA, —— 0

The first row is obtained by applying e, and (—)r, to the short exact sequence
0 Uyp/Eyp — X0 — Xop — 0

which comes from Corollary 1.3.6. The vertical arrows are the natural ones, the ones in the
middle resp. on the right being isos by Proposition 3.7.4.2 resp. Proposition 3.7.4.1.

Claim 3.7.7. - - -
Ker ¢, ~ (exXw) "/Im ((eX%oo) " — (exyXoo) ")

Proof. Apply the snake lemma to the following diagram:

Sl Iy
(ewa/ewa) _— (exfw)rn - (eXXOO)F" 777777

|

0 — e\Up/eyEpy ——— ey X0y ——— e Xy —— 0

n

L/pn—l V-1 -1

0 —— eyUp/eyBy ——— e, Xy ——— e, Xop ——— 0

**** ’ (eano/exEoo)Fn — (exXoo)r, — (exXoo)r,

Then it follows that

Ker ¢, =Im ((ex Xoo)™™ --» (exUso/ex Eco)r,) exactness at (exUsy/exEx)r,
~ (eXXOO)F" /Ker ((exXoo)'™ -=» (exUss/exEx)r,,) 1°" isomorphism theorem
= (eXXOO)F" /Im ((exfoo)r" — (eXXOO)F") exactness at (e, Xo) "

This proves the claim. O
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In particular, Ker ¢,, is a quotient of (eXXOO)F”. We know that e, X is finitely generated
(Proposition 3.7.2.1). Since (exXw)p =~ ey A, (Proposition 3.7.4.1) and the latter is finite, so is
(exXw)p - The exact sequence

0— (eXXOO)F" = exXoo = 5 Xop = (exXo)p, — 0

gives rise to a pseudo-isomorphism e, X/ (eXXOO)F" ~ eyXop. Thus (eXXOO)F" must be finite
as well, as the contrary would violate the structure theorem of finitely generated A-modules
(Theorem 1.1.8). This gives a uniform bound on # Ker ¢,, as it is a quotient of the maximal
finite A-submodule of e, X, denoted (ey X ), - In the square (f), the bottom and right arrows
are monos, thus Ker ¢,, = Kerm, [Bn> 5O # Ker m; /B is also uniformly bounded.

Now consider another commutative diagram.

Kermg , 0 ———  Ker Ty B ~="
Ker p, —— (eXEOO)Fn LN (exUs)p, — (eXUOC/eXEOO)F" — 0
= @ |- [Form
0 exEn exUp ——— e Un/ex B, —— 0

———————————— » Cokermg,, —— 0

The diagram is induced by the short exact sequence
0— e By — Uy — eyUgp/eyEgy — 0

and it has exact sequences as its rows. The dashed arrow comes from the snake lemma and it
yields Ker 7, B = Coker TE n hence # Coker TE ., 18 also uniformly bounded.

By looking at the square (1), we deduce Ker p,, = Ker 75 - Again by the snake lemma as in
Claim 3.7.7, we have

— \I'» = \In
Ker p, = (exUsx/exEqx) /Im ((eXUOO)F" — (exEx) )
The module (eXUOO /eXEOO)F is finite: its size is uniformly bounded by the product

# (6XUOO/6XFOO) - # Ker Ty /B

Here the first factor is finite by Proposition 3.7.2 and the second is uniformly bounded. Invoking
the structure theorem of finitely generated A-modules (Theorem 1.1.8) as before, we deduce
that Ker p,, is a quotient of (eXUoo/eXEoo) qa, and hence # Kerp, = # Ker TE, 18 uniformly
bounded. (In fact, one can show Ker p, = 0: this follows from (eXUOO/eXEOO)ﬁn = 0. The latter
is a consequence of Lemma 8.7 in [Rub90], which asserts that e, X, has no nontrivial finite
submodules. The proof uses the Iwasawa main conjecture.)

It also follows that

A= AHDA ((eXXOC‘)ﬁn @ (eXUm/eXEOO)ﬁn) cA
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annihilates the kernel and cokernel of 7. It only remains to check that is is of finite index. Both
direct summands above are finite by definition and torsion by Proposition 3.7.2, thus we may
use the following lemma.

Lemma 3.7.8. The annihilator of a finite torsion A-module Y is of finite index in A = Z,[T7].

Proof. We claim that for k sufficiently large, (p, T)*Y = 0, thus Anns Y < (p, T)*, which will
prove the lemma.

Let y € Y and f € (p,T). Since Y is finite, there exist 0 < i < j for which fiy # fJy.
Thus (1 — f7=9) fly = 0, but (1 — f77%) is a unit because f is in the maximal ideal (p,T).
Therefore f'y = 0. Doing this for f := p and f := T, we obtain p’y = T%y = 0 for some i, thus
(p, T)? < (p*, T?) annihilates y. Since Y is finite we may repeat this for all 4 and obtain some k
for which (p, T)*Y = 0. O

This finishes the proof of Lemma 3.7.6. L

Now that we have all this information (Propositions 3.7.2 and 3.7.4 and Lemma 3.7.6), we
can start working towards the Iwasawa main conjecture. These first steps will be done in Lem-
mata 3.7.9 and 3.7.10 and summarised in Corollary 3.7.11. See Remark 3.7.12 for an explanation
of the role these statements play in the proof. Both lemmata are proven by using the structure
theorem and some previously discussed properties of the Iwasawa modules in question.

For each character x fix a generator h, of Char (e, Ey /e, Cy) = A (recall that characteristic
ideals are principal by definition).

Lemma 3.7.9. Let x # 1 be even and A < A as in Lemma 3.7.6. Then for allme A and 0 <n

there is a Uy, : ex Ey, — Ar,, for which ¥y, ,(exCp) = nhyAr, .

Proof. e, Ey is a nonzero submodule of e, Uy which is free of rank 1 over A (Proposition 3.7.2),
therefore ey Ey is torsion free of rank 1. By the structure theorem of finitely generated A-
modules (Theorem 1.1.8), we obtain an injective pseudo-isomorphism 4 : eXFOO — A (injectivity
comes from torsion freeness) with finite cokernel. Quotienting out by 6)(600, we obtain a pseudo-
isomorphism

exEx/exCop — NeyCop
Therefore
0 (exéoo) = Char (A/19 (exéoo)) definition of Char, e, Cy is free of rank 1
= Char (eXEoo /exéoo) pseudo-isomorphism preserves Char

= hyA definition of h, (3.19)

For 0 < n let -
Oy = (—)r, 0¥: (eXEOO)rn — Ar

n

and 75, : (exEx)p — exEy be the same as in Lemma 3.7.6. For n € A define

This 9, is well-defined: since n Coker 7z, = 0, the equation nu = 75, (v) can be solved for
each u. The value ¥, ,(u) does not depend on the choice of v because Ker 7, < Kerd,,. This
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is because since Ar, has no Z,-torsion, ¥,, kills all finite submodules of eXEOO, and Ker g, 18
one of these by Lemma 3.7.6.

Now we may conclude the proof:

Pnm (exén) =ndy, (exéoc) exCp = TE (exéoo) by definition
= nhyAr, definition of ¥,, and (3.19) O

Lemma 3.7.10. Suppose e, Xo, ~ @?:1 A/fi\ where the f; are irreducible (cf. Theorem 1.1.8
and Proposition 3.7.2.1). Then there exists an ideal B < A of finite index and

VYn>0:3ci,...,ck€eAn:Vi=1,....k: BAnn, 4, /(c,Ap, +...4ciiAr,)(Ci) € fillr,

Proof. Since e, X, is torsion (Proposition 3.7.2.1), the pseudo-isomorphism relation is symmet-
ric (Lemma 1.1.10), that is, there is an exact sequence

k
OHY%@A/]‘}AH@XXOOHZHO

i=1

where Y and Z are finite. Even better, we have Y = 0: Y is finite and a direct sum of submodules
of A/f;A, but since f; is irreducible, the submodules are only the trivial ones, and A/f; A itself is
infinite (proven in Example 1.1.9), therefore ¥ must be the direct sum of zero modules.

Tensoring with Ar, is right exact, e, X, becomes ey A, (Proposition 3.7.4.1). Apply the
snake lemma:

ZF" ,,,,,,
0 —— @ Afih —— e X Z 0
LYP"—l J’”’n—l ¥ -1
0 —— @i AFh —— e Xo Z 0
fffff » @iy Ar,/fikr, — exAn Zr, 0

Thus we have the following exact sequence:
k
Zn @Ar‘n/fiAFn —eyA, —» Zr, =0
i=1
Set B := Anny (Z) and ¢; := Im (Ar,, /fiAr, — ey Ay,). Since Z is finite and torsion, B is of finite
index by Lemma 3.7.8. O
Combining Lemmata 3.7.9 and 3.7.10 by setting C := A n B, we obtain the following.

Corollary 3.7.11 (First conversion step). Let x # 1 be even. Then there exists an ideal C € A
of finite index such that

1.VneCVn =030, : eXEn — Ar,, such that ﬁn,n(exén) = nhyAr

n’
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2.¥n>03c1,...,cp € exAn : CAMe 4, f(eiAr, +.4ei1Ar, ) (Ci) S filkr, - O

Remark 3.7.12. The main conjecture concerns the generators hy resp. fy, = [[, fi of the char-
acteristic ideals of e, Fo /e, Co resp. e, Xoo. What Corollary 3.7.11 does is bringing these two
closer to one another. Lemma 3.7.10 lets the factors f; of f, be represented by ideal classes c;.
Lemma 3.7.9 will, on the other hand, provide a map ¥, ,. Note that in both cases, the proof
used the structure theorem of finitely generated A-modules in an essential way.

So the first conversion step gives us objects on finite levels, thus allowing for more flexible
algebraic machinery to be used. Namely, the second conversion step Proposition 3.6.1 will provide
us with ideals A; representing both ¢; and a morphism 1 which will arise from ¥,, ;. This will
ultimately lead to establishing a connection between f, and h,.

Definition 3.7.13. For two sequences of positive numbers (a,,) and (b,,) we will write a,, ~o by,
and call the two sequences Big Theta-equivalent if a,,/b,, is uniformly bounded (from above and
below). (We deviate from the standard notation a,, = ©(b,,) here for the sake of convenience.)

Lemma 3.7.14. For every even character x # 1 we have the following:

(1) For every n > 0 the quotients Ar, /fyAr, and Ar, /hyAr, are finite.
(2) We have o
frexAn 5 #Ar, /fxAr,,  #exEn/exCn S #Ar, /hyAr,

Proof. Tensoring the pseudo-isomorphism

k
ex X — (—D A/ fiA
i=1

with Ar, we obtain a morphism

k
exAn = (exXoo)p, = @ Ar, /filkr,
i=1

Since the kernel and cokernel of the original pseudo-isomorphism were finite, so are the ones of
the tensored morphism, and their sizes are uniformly bounded. Therefore Ar,/f;Ar,, is finite for
all n and i since the direct sum of these form the codomain of a morphism with finite domain,
kernel and cokernel.

Write fy, = ]_[j fJa’ where a; > 1 and the f;’s are distinct. Then the Chinese remainder
theorem states that

AFn/fXAFn = @ AFn/fJaJAFn
J
Therefore

# (Ar,/fyAr,) = | [# (Ar,/f}"Ar,)

(# (Ar, /fiAr,))™ Ar,, has no Z,-torsion

(Ar,/fiAr,)

Il
<]

&
I
—

k

# @AFn/fiAFn>

i=1
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In summary, we have

k
#exAn = # (exXoo)p, 5 # <@ Arn/fi/\rn> = # (Ar,/fxAr,) (3.20)
i=1

This proves the first assertions of (1) and (2).

Write h, = [[, hi for the decomposition of h, into irreducible factors. Then as above we
have a pseudo-isomorphism

exEo/exCop — @ Ahy A
,Z‘/
and we obtain pseudo-isomorphisms with uniformly bounded kernels and cokernels

(GXEOC/eXGOO)Fn - @Apn/hiu/\pn (321)

but here we don’t have isomorphisms as we did for the p-part of the class group, just morphisms
(ewa/exéoC)rn — ey En/e Ch, (3.22)

with uniformly bounded kernels and cokernels (Lemma 3.7.6). As before, we have that each
AF"/hi’AF,L is ﬁnite, and

# (exEn/exCn) 5 # (exEw/exCoo)p ~# (@ Arn/hz"AFn> = #(Ar,/hyAr,)  (3.23)

proving the second halves of (1) and (2). O

Remark 3.7.15. Instead of the Chinese remainder theorem, we could also have used Iwasawa’s
theorem on the growth of I',-coinvariants (Theorem 1.2.14). That way, the last equalities of
(3.20) and (3.23) would only have been Big Theta-equivalences.

3.8 The end of the proof

Recall that e, X ~ (—Bi;l A/fiAA, the characteristic polynomial of ey Xo, is fy = f1 -+« fx, and hy
is the characteristic polynomial of e, Eo /ey Co. We wish to prove Theorem 3.1.4, which states
that fy, A = h, A for all even characters x of A.

The proof will use the machinery developed in the previous sections, namely Propositions 3.6.1
and 3.5.13, Corollary 3.7.11, and Lemma 3.7.14. The heart of the proof will be the following:

Lemma 3.8.1. For all even characters x of A, fy | hy.

We postpone the proof of Lemma 3.8.1 and use it to prove the main conjecture after making
just one more observation:

Lemma 3.8.2. Let g1, g2 € A such that g1 | g2 and

# (N giM)p, ~ # (A/g20)r,

Then g1 A = goA.
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Proof. This follows from Theorem 1.2.14. O

Proof (Proof of the main conjecture). Let f:=]] .., fx and b =[], ., fiy; then the above
Lemma 3.8.1 implies f | h. We now verify the condition of Lemma 3.8.2 for g1 := f and g2 := h.

# (NN, 5 [ #O/FM)y,

X even

p n # (ex An) Lemma 3.7.14.2
X even

= #A" orthogonality of idempotents

#(A/hA)y, ~ [T #(0/hd)yp,

X even
S H (eXEn : exén) Lemma 3.7.14.2
X even
—+ =+ . .
= (En : Cn) orthogonality of idempotents

Here FZ resp. 6: are as before the closures of E;} n U, resp. C; nU,, in U,,. The analytic class
number formula [Lan90, Chapter 3, Theorem 5.1] states the following:

#CIQU)* = (B 1 C) (324
Claim 3.8.3. The p-parts of (Ef : CY) and (Ef nU, : CF nU,) agree.

Proof. For every x € EF we have that gNO=Cn+) =1 g iy U, where N denotes the absolute
norm. (Recall that p ramifies totally in Q(p,n+1)/Q with (1 — (,n+1) being the only prime above
p.) Therefore the index (E;} : E;f n Uy,) is finite and divides N(1—(yn+1)—1 = @pns1(1)—1 = p—1
where ®,n+1 is the cyclotomic polynomial. In particular, we have that (E; : E;f n U,) is prime
to p. Similarly pt (Cf : CF n U,,). Write (E;f : C;f nU,,) in two ways:

(Ef Ef nU)E} AU, :CHnU,)=(Ef:CTnU,) =(Ef:CH(C}F:CFnU,)
—_— —_—
pt pt

The assertion follows. (We could also have argued as in the proof of Theorem 1.3.4.) O

Leopoldt’s conjecture rkz, EZ = rkz(E;} nU,) holds for real cyclotomic fields [Was97, p. 75],
and it implies that (E;f nU,) ® Z, = F: and (C;f nU,)®Z, = 6:;.

Using this and Claim 3.8.3 we get that by tensoring by Z, in (3.24) we obtain #A;} =
(E: : 6:) Therefore Lemma 3.8.2 can be applied, and we get f = h. Using Lemma 3.8.1 again

we conclude that f, A = h, A for all even characters . O

We now prove Lemma 3.8.1.

3.8.1 Proofof f, | h, for x =1

First assume x = 1. We will show that both f; and hq are units. (The main conjecture for x =
follows immediately, i.e. without using Lemma 3.8.1, from this.) Recall that A = Gal(Q(u,)/Q).
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Then
e1An = AR = CL(Q(pyn+1)?) @2 Z,

In particular, for n = 0 we have e Ay = (C1Q) ®z Z,, = 0. Using (the proof of) Lemma 1.3.3 we
conclude e; X4, = 0, and thus f; = 1.

We have e; E,, = Ef and e; C,, = 6,?. The analytic class number formula (3.24) is also true
for the field Q(z,n+1). (This is clear from the proof given in [Lan90, Chapter 3, Theorem 5.1].)
Therefore we have

#CL(Qupn+1)2) = (ER : CF)
Upon tensoring by Z,, the right hand side becomes the p-part of Cl (Q(ﬂanrl )A) and on the left
hand side we get the index of local units (Ef :éf). As before, tensoring by Z, is valid here

since the p-adic regulator does not vanish by Leopoldt’s conjecture. The p-part of the class group

is trivial, hence so is Eﬁ /65 for all n. It follows that the characteristic ideal of EOAO /63 is A,
that is, h, is a unit. O

3.8.2 Proof of f, | h, for x # 1

Now suppose x # 1. Let n be fixed for now. Let C and ¢y, ..., ct be as in Corollary 3.7.11, and
choose ci41 € ey Ay, arbitrarily. The reason behind this seemingly odd step is that we will be
doing an inductive process, the i*" step of which will give us information about f;--- f;_1 (see
(3.29)). Since we are interested in f, = fi - - fi, the induction will need to go on for k + 1 steps.

Let n € C be such that
for all j, Ar;/nAr, is finite (3.25)

Below we will give some possible choices for 7, so we need not worry about existence here. It is
now finally time to choose M,,. Choose t € N such that
p' = #Ar, /nAr, and p' > #Ar, /hyAr, (3.26)

Such a t exists: the first inequality can be satisfied due to our assumption on 7 and so can the
second one by Lemma 3.7.14.1. Set M, := #(e, A,) - p"+F+DE,

Since e, C), is generated by e, a1 (see Proposition 3.5.4), we may assume that ¢, , is norm-
alised such that
Onplexar) = nhy (3.27)

Recall that

Ar, = ZP[Fn] =Zp [Gal(Q(Mp"“)/@(lup))]’ G, = Gal(Q(Mp“’+1)+/Q)v

and x is an even character of A = Gal(Q(up)/Q). It follows that e, Z,[G,] = ey Ar, . Thus while
by definition, ord resp. ind map to the group rings Z[G,,] resp. (Z/M,Z)[G ], we may consider
ordy, ,(exfiey.t; o) and indy, , (eyke,...e; ,) as elements of Ar, /M, Ar,. We shall do this from
now on without further comment.

For alli=1,...,k+ 1 we will construct \; € ¢; such that for alli=1,...,k+ 1,
l;i:=(ANinZ)=1mod M, (3.28)
indy, (exhey.tiy) J1- - fic1|exn'hy in ey (Ar, /MyAr,) (3.29)
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where for ¢ = 1, the empty products in (3.29) are understood to be 1. The construction of these
Ai’s will be done by finite induction using the second conversion step Proposition 3.6.1.

Of the two properties of A; above, it is (3.29) that is actually important to the proof; (3.28) is
just a technical necessity, asserting that it is valid to consider the Kolyvagin derivative kg, ...¢,_, .

Before doing the induction, we show that Lemma 3.8.1 already follows from (3.29). Indeed,
consider the equation for i = k + 1. We get

mkk+1 (exﬂgl...gk) f1 tee fk exnkJrth in Ex (AFn/MnAFn)
Ix

It follows that f, | n**'h, in Ar,/M,Ar, and therefore in Ar, /p"Ar,. Up until now n was
fixed; now let it run through all of N. We obtain that f, | 7**1h, holds in A. All that’s left
to do is to remove the n-factor. To do this, let 5 € N be large enough so that 77 € C and
p’ € C—this is possible since C is of finite index in A = Z,[T]—and set n; := T — p% and
no := T — p®I. These satisfy the condition (3.25). Moreover they are coprime to each other and
to (14 T)P" — 1 (quotienting out by this polynomial is the same as taking (—)r, ). Since A is a
UFD (Corollary 1.1.4), it follows from f, | nf ™ h, and f, | n5 T h, that

fx } (nfﬂhx’ngﬂhx) = hy

holds in A, proving Lemma 3.8.1. (Another way to get rid of the n-factor is choosing 7 := p’.
Then the Ferrero-Washington theorem mentioned in Remark 1.2.3 asserts that p { f,, implying

Fx Thx)

Now we return to constructing the \;’s. We will be using Proposition 3.6.1 a total of k+1 times
for F}, := Q(ppn+1)"; in each step we need to specify an ideal class c, a finite G),-submodule W
of X /(F))Mn and a Galois-equivariant map ¢ : W — (Z/M,,Z)[G,,], where G,, = Gal(F,,/Q).
In the i*" step we will set ¢ := ¢;; it immediately follows that the \; obtained will belong to ¢;
and satisfy (3.28). The choices for W and 1 and the verification of (3.29) are more complicated
and will take up the rest of the proof. As we previously have pointed out, h, already appears in
(3.29) for i = 1; this will be reflected in the difference between the definitions of ¢ for ¢ = 1 and

1= 2.

The base case i = 1

First note that we have a map
Y Ar, /M, Ar, =, ex (Ar, /MnAr, ) — (Z/M,Z)[G,]

Here the second arrow is the natural map arising from the facts that there is an isomorphism

Ar,, > Zp[Gal(Q(ppn+1)/Q(pp))], My is a power of p, G, = Gal(Q(ppn+1)*/Q), and x is an even
character of A = Gal(Q(u,)/Q).

Fori=1,let W:=e, (En/Fﬁjn) and

Un,n mod My,
—_

bW =ey (En /Eff’") Ar, /MypAr, 2 (Z/M,Z)[Go] (3.30)

Recall Proposition 3.5.8 with 7 = 1: k1 agrees with Dja; = @1 modulo Mflh powers. Therefore
Un.p(exr1) = On pn(eyar) = nhy by our assumption (3.27) on 7. Thus (3.29) follows from (3.6.1.4):

mh(ex’fl) ’¢(€x“1) = exUnn = exnhy
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The cases 2 <i<k+1

Now let 2 <4 < k + 1 and assume that A1,..., \;_1 have already been chosen. Let
W = (Ar, /MuAr,) exkiey.0, , S FFJ(FX)Mn

Thus W is the modulo M,, reduction of the subgroup of F,* generated by Galois conjugates of
ey ke, ...t;,_, 5 in particular, it is indeed a finite G\,-submodule.

With this in mind, define the map ¢ : W — (Z/M,Z)[G,] by 1 := ¥ 0 ¢) where

¢ W = (Ar,/M,Ar,) extiey e, — Ar,/MyAr,

77@/\1-71 (exﬂel"'ei—l)

fic1

Pex Ky by 1 = P (3.31)

where p € Ar,. We need to check that 1/3 is well-defined, that is, dividing by f;_1 is valid here, and

if pexhipy .0,y = wMn is an M power for some w € FY = (Q(ppn+1)")*, then &(p@xﬁ}gl“.gi_l)

is also an M power. After this, all that will remain is verifying (3.29).

First assume that peyri, .., , = wMn. Recall the statement of Proposition 3.5.13:
ordy, , (exkey.e, ) = —indy,_, (exke,.e,_,) mod MyAp, (Proposition 3.5.13)

Apply the induction hypothesis (3.29) to the expression on the right hand side of Proposi-
tion 3.5.13; by our choice (3.26) of ¢ we have 7 | p* and h,, | p', thus we obtain

_m)\i—l (eX’Wr"&:fz) | eXpit (332)
Meanwhile for the left hand side of Proposition 3.5.13, we have
pordy,_, (exke,...e,_,) = ordx,_, (peykey.e,_,) = 0mod M,Ar, (3.33)

since peyky,...p,_, is an M}Lh power by assumption. Putting Proposition 3.5.13, (3.32) and (3.33)
together yields pp' = 0 mod M, Ar, . or equivalently p = 0 mod M,p~*Ar, . Then since M,, =
#(eyAy) - pr DL e obtain

pex A, =0
Consider the ideal (peyfig,...e; ;) = (w)M» of F,. It can be decomposed as a product with three
factors.

1. The first consists of the primes above ¢;_1, which are the Galois conjugates of \;_1, the
contribution of which is, in additive notation,

ordy,_, (pexre,t,,) Xi—1

2. The second factor contains prime ideals above the rational primes £1,...,¢;_o.
3. The third factor consists of primes p not above any of the ¢1,...,¢;_1: in additive notation,
this factor is

Z pordy (exfip, ., ,) P
p
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Now consider the image of the ideal class of the ideal (pey ke, ..o, ,) in
exAn/ (prime ideals above £1,...,0;_2)

The second factor obviously vanishes, as does the third since every term in it is divisible by p,
which kills e, A,,. Since (peyrie,..0; ;) = (w)M» and N\;_; € ¢;_1, it follows that

Mnil m)\i—l (pexﬁll"‘5i71)

annihilates ¢;_1. Dividing by M,, is valid here for the following reason. In the above factorisation
of (peykiey..t; ) = (w)n», the second factor is killed in the quotienting, and the third factor has
exponent divisible by M,, by Proposition 3.5.9.1. Since every other exponent is divisible by M,,,
so must ordy, , (pexfwl...gifl) be as well.

From Corollary 3.7.11.2 we get that
fio 1 My, " W (peykin, e, ) = nM, " tordy,_, (pexkiey.tiy) € fim1Ar, (3.34)

It follows that M, ~'4(peyks,..c,_,) € Ar,, wherefore 9(peyks,..c, ) € MyuAr,. This proves

well-definedness of ¢ under the assumption pextiey ., = wMr.

Now set p := M,,. This in particular implies peyfig,...r, , = w™n, therefore (3.34) applies, and
shows that the numerator nordy, , (eyxke,..r;_,) in (3.31) is divisible by f;_1. Dividing by f;_1 is
therefore valid by Weierstrass division (Theorem 1.1.2).

This proves that ’(/AJ is well-defined for arbitrary p, and consequently so is ¥ as well.

Remark 3.8.4. Observe that we used both the first and second conversion step for i = 1 as well
as for 2 <i <k + 1. For ¢ = 1, this was very direct; for 2 < ¢ < k + 1, using the first conversion
step is subtly hidden in verifying that our explicit formula for i gives a well-defined map.

Now we verify (3.29) for i, i.e. we prove that

m)\i (exﬁzl“'&:_1) fi fit ‘ eXnihX in €y (Apn/MnAFn)

This is done as follows: working mod M, Ar, we have

nindy,_, (exke,...e;) = nordx,_, (exkey.ti ) by Proposition 3.5.13

= fic1¥ (exkeyt,_y) definition (3.31) of ¢
This together with (3.29) for ¢ — 1 proves (3.29) for ¢, thus completes the induction, and finishes
the proof of Lemma 3.8.1. O
This completes the proof of the Iwasawa main conjecture. O
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Appendix A

The function field analogy

In this chapter we elaborate on how the analogy between number fields and function fields
motivated Iwasawa to develop Iwasawa theory. We will mostly follow [Iwa69a]. The various
objects and statements which correspond to one another under the function field analogy will be
collected in Table A.3.

We will make several statements without proof, and will focus on establishing the analogy on
a heuristic level instead. One should think of the analogy as a way to motivate statements—but
not proofs—in Iwasawa theory. As we have seen in previous chapters, the whole theory can be
built up and also motivated without mentioning function fields. It is worth noting though that
exploring the analogy further can still lead to new results, as demonstrated in the recent papers
[KW10; Shald4], some of whose ideas we discuss in Appendix A.5.

As we shall see, the way this analogy is used is by taking algebro-geometric results about
function fields and formulating analogous assertions about number fields; this will lead us to
cyclotomic fields in a natural way. One could raise the question whether the analogy can be turned
the other way around: is there a theory corresponding to cyclotomic fields in the arithmetic of
function fields? The answer is positive, but won’t be discussed here. We instead refer to the books
[Gos96; Tha04].

Remark A.0.1. In this appendix, number field will mean any algebraic extension of @, not just
a finite one. This deviates from the standard usage of the term. We will call a finite extension of
Q a finite number field.

A.1 The p-part of the Jacobian

Let k£ be an algebraically closed field, and consider a complete, nonsingular algebraic curve C of
genus g over k with Jacobian J. Then J is an abelian variety of genus g, and if J, denotes the
{-primary part where ¢ # char k, then

Jo(k) = (Qe/Ze)* (A.1)

as abelian groups. (For a quick introduction to the theory of Jacobians of curves, see §§5.3.5-5.3.6
of [MPO05]. For details, see [Mil08], esp. §1.10 and §III.1.)
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Proposition A.1.1. For the endomorphism ring of Jy(k) we have End J;(k) ~ Matogyx24(Z¢).

Proof.  First note that Q¢/Z¢ = lim Q¢/Z[£"] where (Q¢/Z¢)[("] is the group of elements killed
by ¢, and the maps are the inclusions (Q¢/Z¢)[¢"] — (Q¢/Z¢)[¢™] for 0 < n < m. Then

End(Qy/Z¢) = Hom (Q¢/Ze, Qe/Zy)
= Hom (lim(Qe/Z¢)[¢"], Qe/Ze)
~ lim Hom ((Qe¢/Z¢)[£"], Q¢/Z)
~ imZ/0"Z = Zy

Using End(Qy/Z¢) ~ Zy and
; End(Qu/Ze)  Hom((Qy/Ze)', Qy/Z)
(@208 @/ > | gyt (Gu/z) B0z

inductively, we deduce End J;(k) ~ End(Qg/Z¢)?9 ~ Matogxag(Ze). O

Our first goal is to find an object in the realm of number fields that corresponds to Jy(k) and
the endomorphisms of which can be described in a manner similar to Proposition A.1.1. Since
the Jacobian is the degree zero part of the Picard group, and the ideal class group CI F of a finite
number field F' is a special case of the Picard group, upon first glance it seems reasonable for
the p-part (C1F) ®z Z,, of the ideal class group to correspond to J;(k) where p is any rational
prime.

The group (C1F) ®z Z,,, however, turns out not to be a good analogue of J;(k). One funda-
mental difference is that the ideal class group of a finite number field is always finite, whereas
J(k) may be infinite (recall that k is assumed to be algebraically closed), and the same holds for
the primary parts. This suggests that we should be seeking an analogue that is somehow larger.

To discover the origin of this discrepancy, we should reverse the question: why do we have
the description in Proposition A.1.1? The proposition is clearly a direct consequence of Jy(k) ~
(Q¢/Zy)?9. The proof of this isomorphism traces back to k being separably closed; more precisely,
to the fact that the multiplication-by-¢ map is surjective. (Cf. Remark 7.3 and the discussion
before Proposition 10.5 in [Mil08].) Recall that we have assumed the stronger condition that &
is algebraically closed.

The field of constants k is the analogue of the roots of unity in F. Indeed, in a finite field,
every nonzero element is a root of unity. The field k is an algebraic closure of some finite field,
thus for every element of k there is a finite subfield containing it, and therefore every nonzero
element is a root of unity.

The analogy also manifests in the following form: the constants respectively the roots of unity
are precisely the elements of the respective field which have absolute value 1 for every absolute
value on the field. For number fields, this follows from a theorem of Kronecker [Kro57] (cf. [Gre78]
for an even simpler proof). For function fields, one uses that every absolute value on K¢ is a
prolongation of an absolute value on k(t). The latter comes either from the degree valuation or
the P(z)-adic valuation where P(z) is a monic irreducible polynomial.

Taking this into account, we set F' = K(upo) where Ky is a finite Galois extension of Q.
Thus we have a Z,-extension F'//Ky; we write K, = F, and K, for the intermediate extensions.
Since J, (k) is the injective limit of the p"-torsion points J(k)[p"], we seek its analogy in a similar
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Function fields Number fields

k (large enough) field of constants (sufficiently many) roots of 1 in F' = K

Ke function field of C, finite extension of k(t) | F = Ky number field

J Jacobian of C lim Cl E; ideal class group

{ # char k rational prime p any rational prime

Jo(k) = lim J(k)[€"] ¢-primary points Ay =lim A, = (lim C1 E;) ®z Z,
J(k)["] = {je J(k) | 5" =0} An = (CLE;) @z Zy

Aoy ~ (Qp/Zp)* ® C (11 -, p1s)
pNAoo = (QP/ZP))\

End J[(k) ~ Mat2gxgg(Zg) End(pNAoo) ~ Mat,\x,\(Zp)

Jo(k) =~ (Qu/Z¢)*

Table A.2: The analogy between function fields and number fields

form. Let, as usual, A, denote the p-part of the ideal class group of K, and let Ay, = lim 4,
where we take the injective limit with respect to the natural maps induced by the inclusions in
the tower of fields. The following theorem is the analogue of (A.1). See Table A.2 for a summary
of which objects correspond to one another.

Theorem A.1.2. There is an exact sequence
0 — (finite p-group) — (QP/ZP)A @D C(p1,- .., ps) = Agp — (finite p-group) — 0

where Cpa, ..., pus) = @i, (ByZ/p"Z), X is the X-invariant of the extension, and p = p11 +
<o+ s is the p-invariant (q.v. Definition 1.1.14). In particular, (Qp/Zy)* @ C(u1,. .., pis) is
pseudo-isomorphic to Ay .

The proof will be given in the next section. Here we draw some conclusions to demonstrate
the analogy between J,(k) and As.
Corollary A.1.3. For large enough N, we have p¥ Ay, ~ (Q,/Z,) .

Proof. Choose N > max(u, ..., ps) so that p” is at least the order of the kernel and cokernel
groups. O

Remark A.1.4. Recall that p = 0 when K;/Q is abelian by the Ferrero-Washington theorem,
and it is conjectured that this is also true for arbitrary Ky; q.v. Remark 1.2.3.

Corollary A.1.3 is the analogue of (A.1). Then just as for the Jacobian, we obtain:
Corollary A.1.5. Endp™ Ay, ~ Matyx(Z,). O

Note that the factor p”¥ simply means that we disregard the bottom N fields of the tower,
i.e. Ky plays the role of Ky. This is the same step as in the proof of Iwasawa’s theorem (The-
orem 1.2.1).

Comparing Corollary A.1.3 with (A.1), one might say that A\/2 is the analogue of the genus of
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the function field Ke. (Since A is an invariant of the Z,-extension K,/Ky, the pV factor makes
no difference.) One might also try to relate this to the notion of the genus for a finite extension of
Q (cf. [Neu99, p. I11.3.5]). We only point out that the two are of fundamentally different nature:
A/2 is a half-integer, whereas the genus of a finite number field is in general not even rational.

Finally, we note that for certain purposes it is better to consider the minus part A2, i.e. the
part where complex conjugation acts by (—1), to be the object analogous to Jy(k). This will be
illustrated in Appendix A.3 where we will sketch the motivating analogy of the main conjecture.

A.2 Proof of the pseudo-isomorphism for A,

In this section we give a proof of Theorem A.1.2. It will go as follows. Since Xon = lim A4, is
a finitely generated torsion A-module (Lemma 1.3.2), we already have a similar result for that,
namely

0 — (finite) — éA/p“"’A@ é—) A/fi(T)™ A — X4 — (finite) — 0 (A.2)
i=1

Jj=1

where = p1 + ...+ pis, A = 22:1 m; deg f; are the Iwasawa invariants. So what we need to do
is relate the injective limit A, = lim A, to the projective limit Xo,. We may do this by applying
the following theorem of Iwasawa [Iwa73, Theorem 11].

Theorem A.2.1. There is a pseudo-isomorphism Homz, (Aw, Qp/Zp) ~ Xeo. O

Given the contravariance of Homgz,(—,Q,/Z,), this statement is hardly surprising. We omit
the proof; it uses Iwasawa’s theory of adjoints (cf. [Iwa73, §1.3] for a summary, [Was97, §15.5)
for details) and the standard techniques used in Section 1.2.

For finitely generated torsion A-modules, pseudo-isomorphism is an equivalence relation (Co-
rollary 1.1.11), so we obtain an exact sequence for Homgz, (A, Qp/Zp):

s t
0 — (finite) > @ A/p"AD P A/f;(T)™ A — Homg, (Ax, Qp/Zy) — (finite) > 0 (A.3)
i=1 j=1

In the category of Z,-modules, Q,/Z, is an injective object. Indeed, since Z, is a PID,
injectivity is equivalent to divisibility [Wei94, Corollary 2.3.2], and it is easily checked that
Qy/Zy is divisible. Thus applying Homgz, (—,Q,/Z,) preserves the exactness of (A.3). We now
verify that this yields Theorem A.1.2 by computing each term in the exact sequence in a series
of claims.

Claim A.2.2 (2 and 5" terms). If M is a finite Zy-module then Homgz, (M,Q,/Zy) is also
finite and of p-power order.

Proof. Let f e Homg, (M,Q,/Zy,) and m € M. Since M is finite, nm = 0 for some n € N. Since
N c Z,, we also have 0 = f(0) = f(nm) = nf(m). Do this for all the finitely many m’s, and let k
be the product of the corresponding n’s. Then k kills the image of f. Since this is true for every
morphism f, it follows that there is a finite Z,-submodule N of Q,/Z,, such that Im f € N, that
is, Homgz, (M,Q,/Z,) = Homg, (M, N). The latter is finite since both M and N are finite.

Furthermore, since N is finite, there is a k € N such that p*N = 0. Therefore p* kills
Homg, (M, N) = Homy, (M, Q,/Z,), hence it has order dividing p". O
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Claim A.2.3. Homgz, (A/p",Q,/Z,) ~ P}, Z/p"Z

Proof. First observe that A/p" = Z,[T]/p" ~ (Z/p"Z)[T]. Therefore any homomorphism
f € Homy, (A/p™, Qp/Z,) is determined by its values on 1, T, T2, ... (Remember that we are
considering (Z/p"Z)[T] as a Z,-module, and forget about the ring structure of (Z/p"Z)[T7], so
there is no correspondence between the values f(7%) for different i’s.) Since p" € Z,, we have
0= f(0) = f(p"T*?) = p" f(T"). We obtain the desired isomorphism. O

Claim A.2.4. For f(T) € A a distinguished and irreducible polynomial:

Homzp (A/f(T)™, QP/ZP) = (QP/ZP)m deg /

Proof. A morphism f € Homg, (A/f(T)™,Q,/Z,) is again determined by its values on 7%, i € N.
We may choose these values freely for 0 < ¢ < mdeg f(T), the rest is determined by these and
the relation f(T)™ = 0. This yields the desired isomorphism. O

Claim A.2.5 (3" term).
Homyz, <<@ A/p“iA> ® (@ A/ fj(T)ma'A) ,Q,,/Zp> ~
i=1 j=1

) <é @Z/pmz> @ (@p/ZP)ijl medeg fi Clpay .oy pis) @ (Qp/Zp))\

i=1 N
Proof. Finite direct sums commute with the Hom functor, thus we may use Claims A.2.3
and A.2.4. O
Claim A.2.6 (4" term). Homy, (Homy, (A, Qp/Zyp) , Qp/Zy) ~ Ay

Proof. Since every element in Ay is of p-power order, the group Homg, (Aw,Q,/Zy) is iso-
morphic to the Pontryagin dual Homes (A, T) of Ay where Homets(—, —) is the group of con-
tinuous group homomorphisms and T denotes the circle group. The holds for the bidual, meaning
that we have

Homyz,, (Homzp (A, Qp/Z,) an/Zp) ~ Homets (Homeys (Ag, T), T)
The group on the right is canonically isomorphic to A, by the Pontryagin duality theorem. [

Putting Claims A.2.2, A.2.5 and A.2.6 together, we see that applying Homgz, (—,Q,/Z,) to
(A.3) yields Theorem A.1.2. O

A.3 Towards the Iwasawa main conjecture

In this section we show how the Iwasawa main conjecture fits into the function field analogy.

Let 7 be an algebraic correspondence on C, that is, a divisor on C x C. (Cf. [Smi05, §§3.1-
3.3] for a quick introduction to correspondences, or [Ful98, Chapter 16] for a more complete
account.) Then 7 induces an endomorphism of the Jacobian J, which restricts to the ¢-primary
part Jy. Proposition A.1.1 states that this restriction can be represented by a matrix M (1) €
Matggng(Zz).
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In particular, let kg be a finite subfield of k such that C is also defined over ky. Then there
is a Frobenius automorphism ¢ € Gal(k/ko). Then the rationality part of the Weil conjectures

states that .

det(1 — oz | H* (Cyy, ,

det(1—pz | H (Criy> Q)
Here the left hand side is the zeta function of the curve C considered as a curve over the finite field
ko, and the numerator resp. denominator on the left hand side are the characteristic polynomials
of the Frobenius ¢ on the ¢-adic cohomology groups. Simply put, (A.4) relates the zeta function
to the eigenvalues of the Frobenius.

What is a similar result for number fields? Let ¢ be an automorphism of K ; then as be-
fore, this induces an endomorphism of p™¥ Ay, which can be represented by a matrix M (o) €
Mat)\ X ,\(Zp).

The simplest case is the case of cyclotomic fields, i.e. when Ko = Q(pp=), Ky = Q(ppn+1).
We will use the notations of Section 3.7. The different formulations of the main conjecture then
relate the characteristic polynomial of an Iwasawa module to some incarnation of the p-adic L-
function (Section 3.1). Since characteristic polynomials in the sense of Definition 1.1.12 describe
the action of a topological generator on an Iwasawa module, this shows the analogy with (A.4).

The result pV Ay, ~ (Qp/Z,)* can be viewed as a statement about orthogonality. In the
cyclotomic tower, we have another sort of orthogonality, namely the one given by the orthogonal
idempotents of Z,[A] (cf. [Was97, §6.3]). More explicitly, the characters of A are w’ for 0 <
1 < p — 2 where w denotes the Teichmiiller character. To ease notation, we will write e; for the
idempotent e,:. One might ask whether these two orthogonalities are related. The answer is
positive, as demonstrated in [Iwa64, §1.3] and summarised in [Iwa69a] by Iwasawa.

We briefly sketch this relation. If we assume Vandiver’s conjecture, that is, the vanishing of
e;Ag for all even ¢, then we have that e; X, ~ A/G 1-i(T)A for all 3 < i < p— 2 odd. For a
proof, consult [Was97, Theorem 10.16]; note that the proof is relatively elementary, that is, it
uses little more than Iwasawa’s construction of p-adic L-functions. This result should be seen as
the first instance of the main conjecture; it is clear that Iwasawa considered it to be so. (See also
Section 3.2 for a different perspective.)

Using p-adic Weierstrass preparation (Theorem 1.1.3), we may write
Gor=i(T) = p"iui (T)mi(T)

where ji(; > 0 is an integer, u;(T) € A*, and m;(T) € Z,[T] is a monic polynomial of degree
Agy- We have

AJGoi=i(T)A = Z,[T]/ (0" wi(T)my(T)) ~ (Z/p" O Z) [T]/mi(T)

Tt follows that S7-2 Ay = A and Y7°2 iy = poe

Let v be a topological generator of I'. This is represented by the A x A\ matrix M (y). By
orthogonality, its action on the w’-component is represented by a Ay X Ay matrix M;(y).
Moreover since the topological generator v of I' corresponds to 1+7, the characteristic polynomial
of M;(7y) is m;(T — 1). Let

G(T) := 1:[ Goi-i(T), u(T):= 1:[ w;(T), m(T):= 1:[ m;(T)
i=0 i=0 i=0
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Then we have G(T) = p*u(T)m(T), and m(T — 1) is the characteristic polynomial of M (7).
This is a more explicit description of how the p-adic L-function is related to the action of the
topological generator.

By assuming Vandiver’s conjecture above, we were essentially working with A7, instead of
Ay, which shows that for these purposes, the former is the better analogue of Jy(k).

A.4 The Weil pairing

For an abelian variety A and an algebraically closed field k, one has a non-degenerate Weil pairing
A(k)(m) x AV (k)(m) — pm(k) where m is an integer not divisible by the characteristic of k, and
AV denotes the dual abelian variety [Mil08, §1.13]. Since Jacobians are autodual, in our setting
we have J[£"] x J[{"] — pe for all n, which yield

Ty(J) x Te(J) — pugee (A.5)

Given the analogies discussed above, it is natural to raise the question whether there is an
analogous pairing for Z,-extensions.

As indicated at the end of the previous section, we will be considering A as the analogue of
Je¢(k). Remembering that one of the Ty(J)’s in (A.5) appear in the role of a dual, in the analogous
statement we will should replace one of them by XF. Instead of XJ, however, the statement
features the larger module X7, i.e. the plus part of the Galois group of the maximal p-ramified
abelian p-extension. Namely, we have a non-degenerate pairing

A(;C X x;ro — Up» (AG)

This is called the Iwasawa pairing, first proven by Iwasawa [Iwa64]. The pairing is constructed
from a Kummer pairing [Was97, §13.5]. For elliptic curves, one may think of the Weil pairing as
an instance of Kummer theory, which validates the analogy further (see [Sil09, Chapter VIII, §1]
for a thorough exposition or [Sil12] for a heuristic explanation, both by Silverman). Washington
makes the point that when it comes to Kummer theory, X, allows for a ‘more natural theory’
than X .

Remark A.4.1. There also exists a version of the Iwasawa pairing for y-components, see [NSW15,
Theorem 11.4.3] or [Was97, Proposition 13.32].

A.5 Generalised Jacobians

In this section we will illustrate that the analogy presented above is still relevant in contemporary
research as motivation. To this end, we will give a survey of the reciprocity conjecture of Khare
and Wintenberger [KW10], which was strengthened and proved by Sharifi [Shal4]. For details
and a proof, we refer to these papers.

As before, let C be a complete nonsingular curve over k. Let Py, P» € C(k) be two distinct
k-rational points. There is an exact sequence

0= G — Jp,p, = J >0 (A.7)
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Q(pp)
N S
Q

Figure A.1: The number fields involved in Appendix A.5.

where G, is the multiplicative group and Jp, p, denotes the generalised Jacobian [Ser88, §V.17].
In other words, Jp, p, is an extension of the Jacobian J by the multiplicative group G,,. Consider
the class of (A.7) in Ext'(J,G,,). This can be identified with the degree zero divisor class
[Py — Py] € J(k) [Ser88, Theorem VII.16.6].

Taking Tate modules for a prime ¢ # p, we have that Ty(Jp, p,) is also an extension:
0— Z¢(1) - Te(Jp,.p,) = Te(J) — 0 (A.8)

Here Z¢(1) = lim ju¢». We have right exactness because all connecting maps between G,,[¢"] =
fen are surjective. This extension class in Ext%z[[Gk]] (TyJ,Z(1)) is then identified with the image
of [Py — P,] in the ¢-primary part J(k)[¢*]. This identification takes place in the cohomology
group H' (G}, Ty(J)); we end up in this group by using Weil duality [KW10, §5.3].

We seek an analogy of this statement for number fields. We begin with definitions; see Fig-
ure A.1. Let K be a CM-field containing 1, with maximal totally real subfield K *. Consider the
cyclotomic Zy-extensions of K resp. K; these will be denoted by K resp. K. Let M resp.
M, be the maximal pro-p abelian p-ramified extension of F'* resp. F.}. Let q; and gz be distinct
primes of F* not above p which are inert in F5, and Frq,,Fry, € Gal(M/F™T) be the Frobenius
elements of q; resp. qs.

We now construct an analogue Mg of the ¢-part of the degree zero divisor class [P, — Ps].
There is a short exact sequence

0 — Gal(M,/K3) — Gal(My/K+) 25 7, - 0
where we call the map to Z, the degree map. Let M, := (Frq,, Frq,)z, be the Zy-submodule
of Gal(M,,/K ) generated by the Frobenius elements, and Mg its maximal Z,-submodule that
vanishes under the degree map. Since the Frobenius elements Fry,, Fry, represent the primes q1,
q2, and these in turn correspond to the points P;, P, under the analogy, this shows that Mg is
indeed analogous to the class [P — Py].

Now for the object corresponding to the extension class. Let Ay 4,4, denote the p-part of the
ray class group of K, of conductor q;q2. Using the assumptions on the primes g1, g2 we have an
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exact sequence
0 — ppo — AL — A, —0 (A.9)

90,9192

This can be considered analogous to (A.8): both generalised Jacobians and ray class groups
control ramification. We define Ng to be the subgroup of Ext%p[m] (A, ppo) generated by the
class of (A.9).

It follows from definition that Ext%p[m] (AL, po ) agrees with the I'-coinvariants of the module
Hom(A, tp»). The Iwasawa pairing—which, as discussed in Appendix A.4, is analogous to
the Weil pairing—identifies Hom(AZ, pip) with Gal(My/K}), the I-coinvariants of which is
Gal(M/KF}). This shows Ext%p[m] (A, pp=) ~ Gal(M/K). The latter is also isomorphic to
HY(T, Gal(My,/F)) via evaluation at a generator; this is in analogy with H'(Gy,T;(J)) above.

This allows us to relate Mg to Ng. Khare and Wintenberger conjectured these subgroups
to be equal, in analogy with the function field case. One might notice that while the original
statement is about elements, the conjecture of Khare and Wintenberger is about groups generated
by corresponding elements. Sharifi later made and proved a slightly stronger version of the
conjecture about generators of these groups. We decided to restrict ourselves to presenting this
weaker form since most of the ways the analogy works can already be observed in this case
without going into too much detail.
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A.6 The analogy in tabular form

Function fields

Number fields

k (large enough) field of constants

(sufficiently many) roots of 1 in F' = K,

C complete nonsingular curve over k

g genus of C

A2 ()

k()

Q

Ke function field of C, finite extension of k()

F = Ko, number field

J Jacobian of C

lim C1 E; ideal class group

¢ # char k rational prime

p any rational prime

Jo(k) = lim J(k)[p"] ¢-primary points

Ay = h_r)nAn = (@ClEl) Xz Zp or A;)

J(k)[*] = {j e J(k) | j* =0}

A, = (C1E)) ®; Z,

Cp1, - ps) = Dj_y (BN Z/p™1T)
=1+ ...+ s

Jo(k) =~ (Q¢/Z¢)*

AOO ~ ((@p/Zp)A @ C(/J‘h e 7/”'8)
pNAyp ~ (QP/ZP))\

End J,(k) ~ Mato,x24(Z,)

End(pY Ay) >~ Maty«(Z))

T;(J) Tate module

Xo = T)(F) Tate module

Xoo ~ Hom(Ag, Qp/Zy)

7 algebraic correspondence on C

o€ Aut(F)

M (7) matrix of the induced
element in End J,,

M (o) matrix of the induced
element in End p™ Ao,

ko finite subfield of &

K finite number field

¢ € Gal(k/kg) Frobenius

~ € I' topological generator

characteristic polynomial of ¢

characteristic polynomial
in the sense of Definition 1.1.12

Z(Cky»x) zeta function

p-adic L-function

Ty(J) x Ty(J) = pee Weil pairing

A-

4 o
o X X5 — ppe Iwasawa pairing

Py, P, k-rational points

q1, g2 inert primes not over p

Jp, p, generalised Jacobian

ray class group
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