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Introduction

The main goal of this thesis is to give an introduction into some basic concepts of Iwasawa theory,
most importantly a proof of the so-called main conjecture. Our aim is to present this in a very
detailed way, suitable for anyone with a background in algebraic number theory. While there
already exist quite a few accounts of the topics this thesis covers, the level to which they are able
to be readily understood may be deemed a bit too low, especially when it comes to the proof of
the main conjecture. Our hope is that this thesis may provide some help on this front.

Outline

The thesis is structured as follows.

Chapter 1 introduces some basic notions of Iwasawa theory, including the structure theory
of modules over the completed group ring ZpJT K and Iwasawa’s theorem on the p-part of class
numbers in a Zp-extension. The proof involves standard techniques of Iwasawa theory, which will
be used in the sequel.

Chapter 2 gives a very brief overview of the theory of (analytic) p-adic L-functions. The
aim here was not to present a thorough exposition but to give just enough context for the
interpretation of the Iwasawa main conjecture in the next chapter.

Chapter 3 is the heart of the thesis. Here we explain the statement of the Iwasawa main
conjecture. Roughly speaking, this asserts the equivalence of the p-adic L-functions of Chapter 2
with the characteristic power series—introduced in Chapter 1—of an Iwasawa module. We then
present Rubin’s proof of the main conjecture using so-called Euler systems. The proof is rather
complex, so in order to ease understanding, we have included a discussion of the ideas at play
before performing the actual proof.

Finally, in Appendix A we discuss how the analogy between function fields and number
fields, and thus the theory of curves over finite fields, motivates the study of Iwasawa theory.
The appendix can be read mostly independently of the rest of the text; it requires some familiarity
with algebraic geometry.

About notations

As of yet, there appears to be no wide consensus on notation in Iwasawa theory: that used by
Iwasawa in his seminal papers has been superseded by various different systems of notation. To
make things more complicated, authors frequently use the same notation for similar but different

1



Introduction

objects. In the present text we aimed to conform with notation used in some recent works, in
particular those used by Sharifi in e.g. [Sha]. A list of notations can be found on page 69.

Throughout the whole text, N “ t1, 2, . . .u shall denote the set of positive integers, and p
shall be an odd rational prime. Most statements can be extended to the case p “ 2 with slight
modifications.

We fix, once and for all, a compatible system of primitive p-power roots of unity ζpn for n P N,
compatibility meaning that ζp

pn`1 “ ζpn . As usual, we let µr denote the group of rth roots of

unity for r P N, µp8 :“
Ť

ně0 be the group of p-power roots of unity, and

Qpµp8q :“
ď

ně0

Qpµpn`1q

About references

The present text is primarily based upon the books of Lang [Lan90] and Washington [Was97].
Both are comprehensive accounts of the theory of cyclotomic fields, including basic Iwasawa
theory and a proof of the main conjecture, covering a much larger amount of material than
the present text. Whenever we do not state otherwise, these should be understood to be the
references.

Coates and Sujatha’s book [CS06] was also used as a reference; it is focused on the p-adic
zeta function and Rubin’s proof of the main conjecture. Their exposition of the material is self-
contained but less elementary than that of the present text; in particular, it relies heavily on
using measures.

A good reference for some of the key ideas is [KKS12]. We also recommend the lecture notes
[Sha]. The reader is encouraged to consult any and all of these references for slightly different
perspectives.
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Chapter 1

Zp-extensions

In this chapter we shall introduce some basic notions of Iwasawa theory. In the first section we
will survey a few results about modules over the ring Λ “ ZpJT K. This ring is called the Iwasawa
algebra, and we will refer to Λ-modules as Iwasawa modules. There is a structure theorem of
finitely generated Λ-modules, which will be of paramount importance.

To illustrate this, let K8{K be a Galois extension with Galois group Zp; such a field extension
is called a Zp-extension. Then the non-trivial closed subgroups of the Galois group are pnZp, and
it follows from the fundamental theorem of infinite Galois theory that the Galois subextensions
form a tower

K8 Ă . . . Ă Kn Ă . . . Ă K1 Ă K0 “ K

where GalpK8{Knq “ pnZp. It turns out that in this setting, certain groups can be endowed
with a Λ-module structure, allowing us to use the aforementioned structure theorem to extract
more information about the extension.

In Section 1.1 we give will discuss the structure theorem and some related notions which will
be used extensively in the sequel.

Section 1.2 contains a standard proof of Iwasawa’s theorem on the orders of p-parts of class
groups in a Zp-extension of a number field. The proof we give is rather elementary and detailed,
aimed at a reader with modest background. In particular, we will only use basic algebraic number
theory, with the unavoidable exception of using the existence of Hilbert class fields as well as the
isomorphism between their Galois groups and the ideal class groups. A reader unfamiliar with
class field theory may take these statements for granted.

In Section 1.3, we will present some further results on various Iwasawa modules, using the
machinery of the preceding section. Here we will already need to use a lot of class field theory.
The results in this section will be used in the proof of the main conjecture in Chapter 3.

The default references for this chapter are [Was97, Chapter 13] and [Lan90, Chapter 5].
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Chapter 1. Zp-extensions

1.1 The structure of Λ-modules

We will often work with fields resp. field extensions whose class groups, Galois groups, groups
of units etc. possess a ZpJT K-module structure. We call Λ :“ ZpJT K the Iwasawa algebra. In this
section we survey some of the basic results concerning Λ-modules. For a more detailed exposition,
see [Was97, §13.2] or [Lan86, Chapter 5, §§1–3].

We recall two important theorems from p-adic analysis [Was97, §7.1].

Definition 1.1.1. A nonconstant polynomial in ZprT s distinguished if it is monic and all coef-
ficients but the leading one are divisible by p.

The following theorem states that there is a division algorithm for distinguished polynomials.
(Note that we cannot hope for a division algorithm for the whole ring Λ, because that would
imply being a principal ideal domain, which Λ is not: the ideal pp, T q is not principal.)

Theorem 1.1.2 (p-adic Weierstrass division theorem). Let f P Λ be a power series, P P ZprT s
a distinguished polynomial. Then there exist unique q P Λ and r P ZprT s such that f “ qP ` r
and deg r ă degP .

Theorem 1.1.3 (p-adic Weierstrass preparation theorem). Any nonzero fpT q P Λ “ ZpJT K
can be written uniquely as fpT q “ pµP pT qUpT q where µ ě 0 is an integer, P pT q P ZprT s is a
distinguished polynomial, and UpT q P Λˆ is a unit.

Corollary 1.1.4. Λ is a UFD.

Proof. Apply Weierstrass preparation, then repeated Weierstrass division for the distinguished
factor. It follows that Λ is a UFD with the irreducible elements being p and the irreducible
distinguished polynomials.

We return to the study of Λ-modules; specifically, to one of the many incarnations of Na-
kayama’s lemma. Note that Λ is a topological module.

Lemma 1.1.5 (Nakayama). Let X be a compact Λ-module. Then the following hold.

(1) X is finitely generated over Λ iff X{pp, T qX is finite;
(2) X “ 0 iff X{pp, T qX “ 0.

Proof. If X is finitely generated then X{pp, T qX is finite because Λ{pp, T qΛ is finite.

For the other direction of the first assertion, we first claim that for any compact Λ-module
X we have

8
č

n“0

pp, T qnX “ 0 (1.1)

Let U be a neighbourhood of 0. For each x P X there is a neighbourhood Ux such that pp, T qnUx Ď
U because pp, T qn Ñ 0 in Λ. Finitely many of these sets Ux cover X by compactness. Since we
may choose U to be arbitrarily small, this proves the claim.

Now suppose that X{pp, T qX is finite, in particular, let X{pp, T qX “ tx1, . . . , xku where xi
is the image of xi P X under the quotient map. Let Y :“ Λx1 ` . . . ` Λxk. This is a compact
Λ-module because X is, and therefore so is X{Y . By definition, Y `pp, T qX “ X, which implies
pp, T qX{Y “ X{Y . It follows by induction that pp, T qnX{Y “ X{Y for all n ě 0. Then (1.1)
proves X{Y “ 0. Hence X is generated by x1, . . . , xk. This finishes the proof of the first assertion.

4



§1.1. The structure of Λ-modules

The second assertion follows from this proof by letting k :“ 0.

Definition 1.1.6. A morphism of Λ-modules ϕ : X Ñ Y with finite kernel and cokernel is
called a pseudo-isomorphism. Two Λ-modules X and Y are pseudo-isomorphic if there exists a
pseudo-isomorphism X Ñ Y . This is denoted by X „ Y .

Remark 1.1.7. Some authors use the term quasi-isomorphic.

Theorem 1.1.8 (Structure theorem of finitely generated Λ-modules). Let X be a finitely gen-
erated module over Λ. Then there exist distinguished irreducible polynomials fj P ZprT s such
that

X „ Λr ‘
s
à

i“1

Λ{pniΛ‘
t
à

j“1

Λ{fjpT q
mjΛ

where r, s, t, ni,mj P N.

Proof. Here we only sketch the proof; for details see [Was97, Theorem 13.12]. The proof is
similar to that of the structure theorem of finitely generated modules over PIDs. (For a more
general statement and proof, cf. [NSW15, (5.1.10)].)

Let X have generators u1, . . . , un, let the relations between these generators be given by
equations λ1,ju1 ` . . .` λn,jun “ 0. Then the matrix pλi,jq describes the structure of X.

We will perform the following operations on pλi,jq. The first three are the usual row and
column operations providing isomorphisms of modules, while the other three are specific to Λ and
only provide pseudo-isomorphisms from X to another module. It is clear that the composition
of pseudo-isomorphisms is a pseudo-isomorphism, that is, the pseudo-isomorphism relation is
transitive.

A. Permute rows or columns.
B. Add a multiple of a row resp. column to another row resp. column.
C. Multiply a row or column by a unit in Λ.
1. If all elements of a row except for one are divisible by p then we may divide these elements

by p and multiply all other elements in the column of the exceptional element by p. We
obtain a pseudo-isomorphismX ãÑ X 1 “ X‘vΛ for a new generator v (and some relations).
(In the formula below, this operation is applied k times.)

¨

˚

˚

˚

˝

λ1,1 pkλ11,2 ¨ ¨ ¨ pkλ11,m
λ2,1 λ2,2 ¨ ¨ ¨ λ2,m

...
...

. . .
...

λn,1 λn,2 ¨ ¨ ¨ λn,m

˛

‹

‹

‹

‚

¨

˚

˚

˚

˝

λ1,1 λ11,2 ¨ ¨ ¨ λ11,m
pkλ2,1 λ2,2 ¨ ¨ ¨ λ2,m

...
...

. . .
...

pkλn,1 λn,2 ¨ ¨ ¨ λn,m

˛

‹

‹

‹

‚

2. If all entries of a row as well as a column are divisible by pk (k P N) and the entry in their
intersection isn’t divisible by pk`1 then we may divide all elements of the row by pk. (In
the formula below, p - λ11,1.) We obtain a pseudo-isomorphism X ãÑ X‘ vΛ “ X 1‘Λ{ppkq

where the newly constructed matrix describes the relations in X 1. Since Λ{ppkq is already
of the desired form, we need only focus on X 1.

¨

˚

˚

˚

˝

pkλ11,1 pkλ11,2 ¨ ¨ ¨ pkλ11,m
pkλ12,1 λ2,2 ¨ ¨ ¨ λ2,m

...
...

. . .
...

pkλ1n,1 λn,2 ¨ ¨ ¨ λn,m

˛

‹

‹

‹

‚

¨

˚

˚

˚

˝

λ11,1 λ11,2 ¨ ¨ ¨ λ11,m
pkλ12,1 λ2,2 ¨ ¨ ¨ λ2,m

...
...

. . .
...

pkλ1n,1 λn,2 ¨ ¨ ¨ λn,m

˛

‹

‹

‹

‚
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Chapter 1. Zp-extensions

3. If all entries of a row pλi,1, . . . , λi,mq are divisible by pk, and for some p - λ P Λ, we have
that pλλi,1, . . . , λλi,mq is also a relation in X (but not necessarily a row of our matrix) then
we may divide all elements of the row by pk. We obtain a pseudo-isomorphism X � X 1.

¨

˚

˚

˚

˝

pkλ11,1 pkλ11,2 ¨ ¨ ¨ pkλ11,m
λ2,1 λ2,2 ¨ ¨ ¨ λ2,m

...
...

. . .
...

λn,1 λn,2 ¨ ¨ ¨ λn,m

˛

‹

‹

‹

‚

¨

˚

˚

˚

˝

λ11,1 λ11,2 ¨ ¨ ¨ λ11,m
λ2,1 λ2,2 ¨ ¨ ¨ λ2,m

...
...

. . .
...

λn,1 λn,2 ¨ ¨ ¨ λn,m

˛

‹

‹

‹

‚

Using operations A, B, C, 1, and 2 inductively, we can bring our matrix to a diagonal form,
with the elements in the diagonal consisting of distinguished polynomials and zeros. Operation
3 is used only at the end of the process when we deal with zeros in the diagonal. Putting the
summands Λ{ppkq back, we obtain a pseudo-isomorphism

X Ñ Λr ‘
s
à

i“1

Λ{pniΛ‘
q
à

j“1

Λ{λj,jλΛ

Here the λj,j ’s may not be irreducible, but this can be resolved by using that the natural morph-
ism Λ{pfgq ãÑ Λ{pfq ‘ Λ{pgq has finite cokernel whenever f, g P Λ are coprime (cf. [Was97,
Lemma 13.8.1]). This finishes the proof.

Example 1.1.9 (Pseudo-isomorphism is not symmetric). To construct a counterexample, consider
the inclusion of the ideal pp, T q ãÑ Λ. This is a pseudo-isomorphism of Λ-modules: the kernel
is trivial and the cokernel is ZpJT K{pp, T q » Zp{ppq » Z{pZ, so we have pp, T q „ Λ. However,
we claim that Λ  pp, T q. Indeed, suppose we have a pseudo-isomorphism ϕ : Λ Ñ pp, T q. Then
Imϕ “ pfpT qq where fpT q “ ϕp1q, and Cokerϕ “ pp, T q{pfq. Since Λ{pp, T q » Z{pZ is finite,
the cokernel is finite iff Λ{pfq is finite. This is not the case: write f “ pkg where p - g. Then
Λ{ppkq „ pZ{pkZqJT K is infinite, and Λ{pgq is infinite as well by the p-adic Weierstrass division
theorem (Theorem 1.1.2), hence Λ{pfq is infinite.

This demonstrates that the obstruction to symmetry in the pseudo-isomorphism relation lies
in the free part. The following lemma makes this more precise.

Lemma 1.1.10. The pseudo-isomorphism relation is symmetric for finitely generated torsion
Λ-modules.

Proof. This will follow once we show that the pseudo-isomorphism in the structure theorem
can be reversed in this case. To construct this morphism, run the algorithm in the proof of the
structure theorem. The morphisms obtained by using operations A, B, and C are isomorphisms,
hence they can be reversed. Morphisms coming from operations 1 and 2 are inclusions of X into
a direct sum X ‘ vΛ; replace them with projections X ‘ vΛ� X. These will have finite kernels
for the same reason the inclusions had finite cokernels. By using these operations, we bring our
matrix to diagonal form. We know that there are no zeros in the diagonal since those would
correspond to free parts of which there is none due to the module being torsion. Thus we obtain
a pseudo-isomorphism

s
à

i“1

Λ{pniΛ‘
q
à

j“1

Λ{λj,jλΛ Ñ X

We again factor the λ1j,js using that there is an injection Λ{pfq ‘ Λ{pgq ãÑ Λ{pfgq with finite
cokernel whenever f, g P Λ are coprime (cf. [Was97, Lemma 13.8.2]).
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§1.1. The structure of Λ-modules

A more general—but not more illuminating—proof of Lemma 1.1.10 can be found in [NSW15,
p. 271, Remark 1.].

Corollary 1.1.11. The pseudo-isomorphism relation is an equivalence relation for finitely gen-
erated torsion Λ-modules.

Proof. Reflexivity is clear, and symmetry has just been proven in Lemma 1.1.10. It is easily
seen that the composite of two morphisms with finite kernel and cokernel also has finite kernel
and cokernel, proving transitivity.

Definition 1.1.12. Consider a finitely generated torsion Λ-module X. Using Theorem 1.1.8,
write

X „

s
à

i“1

Λ{pniΛ‘
t
à

j“1

Λ{fjpT q
mjΛ

We define the characteristic ideal of X by

CharpXq :“

˜

s
ź

i“1

pni

¸˜

t
ź

j“1

fjpT q
mj

¸

Λ

This is easily seen to be well-defined and invariant under pseudo-isomorphisms. A generator of
the characteristic ideal is called a characteristic polynomial of X. If all ni “ 0 (which we will later
call the µ “ 0 case, see Definition 1.1.14 below) then the characteristic ideal is generated by the
characteristic polynomial of the multiplication-by-T linear map; cf. [KKS12, Proposition 10.23]
for details.

Lemma 1.1.13. Characteristic ideals are multiplicative in short exact sequences. That is, if

0 Ñ Y 1 Ñ Y Ñ Y 2 Ñ 0

is a short exact sequence of finitely generated torsion Λ-modules then

CharpY q “ CharpY 1qCharpY 2q

Proof. Let
0 Ñ Y

ϕ
ÝÑ

à

i

Λ{fipT q
miΛ Ñ CokerϕÑ 0

where fipT q P Λ is either irreducible or p, and Cokerϕ is finite (the kernel is zero because Y is
torsion, see the proof of Theorem 1.1.8). Let f P Λ be either an irreducible polynomial or p, and
tensor by Λpfq; this preserves exactness [Stacks, Tag 00CS].

0 Ñ Y bΛ Λpfq
ϕ
ÝÑ

à

i

Λpfq{fipT q
miΛpfq Ñ CokerϕbΛ Λpfq Ñ 0

For any g P Λzppp, T q Y pfqq there is some n P N such that gn Cokerϕ “ 0 by finiteness, and
g becomes a unit under localisation, thus Cokerϕ bΛ Λpfq “ 0. Moreover, for all i such that
pfq ‰ pfiq, fi also becomes a unit, thus these terms in the direct sum vanish. We have proved

Y bΛ Λpfq “
à

pfiq“pfq

Λpfq{fipT q
m
i Λpfq

Doing this for Y 1 and Y 2, and all f :“ fi’s finishes the proof.

7
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Chapter 1. Zp-extensions

Definition 1.1.14. Let X be a finitely generated Λ-module and write

X „ Λr ‘
s
à

i“1

Λ{pniΛ‘
t
à

j“1

Λ{fjpT q
mjΛ

Let µ :“
řs
i“1 ni and λ :“

řt
j“1 deg fjpT q

mj . These λ resp. µ are called the λ- resp. µ-invariant
of the module X.

1.2 Iwasawa’s theorem on the growth of the class number

Let K be a number field and K8{K a Zp-extension, i.e. Γ :“ GalpK8{Kq » Zp, and let Kn be
the subextension corresponding to the subgroup pnZp for n ě 0 (in particular, K0 “ K). Then
the ideal class group ClpKnq is a finite abelian group, and therefore can be decomposed as

ClpKnq “ An ‘A
1
n (1.2)

where An is the p-Sylow subgroup. In particular, An has order pen for some exponent en.

Theorem 1.2.1 (Iwasawa). There exist n0, c P N0 such that for all n ě n0 we have en “
µpn ` λn` c.

Remark 1.2.2. Theorem 1.2.14 is a generalisation of this statement.

Remark 1.2.3. It is conjectured that µ “ 0 whenever K8{K is a cyclotomic Zp-extension, that is,
one obtained by adjoining p-power roots of unity. This is the so-called Iwasawa µ “ 0 conjecture;
for a survey, cf. [Suj11]. It has been proven for abelian number fieldsK by Ferrero and Washington
[FW79] but remains open when K is an arbitrary number field. There exists a counterexample
for non-cyclotomic Zp-extensions. There is another statement called the Ferrero–Washington
theorem, concerning the p-adic L-function, stating that at least one of its coefficients is a p-unit,
cf. [Lan90, Chapter 10, Theorem 2.3] or [KKS12, Therorem 10.9]. The Iwasawa main conjecture
implies the equivalence of these two assertions. We further remark that even though Barsky
proposed a proof of the µ “ 0 conjecture for all totally real fields [Bar04], and thus it was stated
in [MP05, §5.4.5] that this case of the conjecture had been proven, Barsky later retracted the
paper due to an error.

Remark 1.2.4. In the proof of Theorem 1.2.1 we will use the structure theorem (Theorem 1.1.8)
for a finitely generated torsion Λ-module. As we shall see towards the end of the proof, the ex-
ponential part µpn comes from the direct summands Λ{pniΛ whereas the linear part λn comes
from the summands Λ{fjpT q

mjΛ. This is in line with the definition of these invariants in Defin-
ition 1.1.14. See Theorem 1.2.14 for a generalisation.

The rest of this section will be devoted to the proof of Theorem 1.2.1. During the proof, we
will establish basic notions of Iwasawa theory. In particular, we will discuss through an example
how some groups associated with fields within a Zp-extension such as various Galois groups can
be endowed with a Λ-module structure. As it will be obvious, this construction can be applied
to other groups too, and in later sections we will do so without further comment. There are also
other important steps within the proof that are interesting in their own right. Some of these will
be highlighted in Section 1.3.
Proof. First we will use class field theory to pass from the ideal class groups above to certain
Galois groups. Let Mn the unique maximal unramified abelian extension of Kn, called the Hilbert

8
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Kn

LnL1n

Mn

An

Figure 1.1: The p-Hilbert class field Ln of Kn

K8

L8

Kn`1

Ln`1

Kn

Ln

K0

L0

X8

. . .

. . .

An`1

An

. . .

. . .

A0

Γ » Zp

G

Figure 1.2: A Zp-extension with the tower of corresponding p-Hilbert class fields

class field, the existence of which is proven in class field theory. Let Ln be the unique maximal
unramified abelian p-extension of Kn, L1n the unique maximal unramified abelian extension of
Kn of degree coprime to p; then Ln and L1n are subfields of Mn, and we call Ln the p-Hilbert
class field of Kn. We have

GalpMn{Knq “ GalpLn{Knq ˆGalpL1n{Knq (1.3)

where GalpLn{Knq is a p-group and GalpL1n{Knq has order coprime to p. By class field theory
we have an isomorphism (the Artin map)

ClpKnq
„
ÝÑ GalpMn{Knq

Comparing this with (1.2) and (1.3), we conclude that there is an isomorphism

An
„
ÝÑ GalpLn{Knq

In particular, #An “ # GalpLn{Knq, thus from now on we may focus on Galois groups instead
of ideal class groups. We will, in fact, by abuse of notation, also denote this Galois group by An,
with the remark that for the rest of this proof, one should think of it as a Galois group.

Let L8 :“
Ť

ně0 Ln, G :“ GalpL8{Kq. Then X8 :“ GalpL8{K8q “ lim
ÐÝ

An with respect to
the norm maps. (This is the notation most widely used, but alas, it is rather counterintuitive

9



Chapter 1. Zp-extensions

here. The symbol A8 is commonly used for the injective limit.) As this projective limit contains
all the information about the groups An, we will now concentrate on X8. We will endow X8
with a Λ “ ZpJT K-module structure and then show that X8 (or rather a submodule of it) is
finitely generated over Λ, which will mean that the structure theorem of such modules will be
applicable, meaning that we will obtain a relatively explicit description of X8.

We construct the aforementioned module structure on G in a slightly more abstract setting in
Lemma 1.2.5 so that it remains clear that we only need abelianity of Γ and X8 for this, nothing
more.

Lemma 1.2.5. Let G be a group and N Ÿ G an abelian normal subgroup such that the quotient
H “ G{N is also abelian. Then H acts on N in the following way: for gN P H and n P N , let
ng :“ ngN :“ gng´1.

Proof. We first check that ngN is well-defined, i.e. it does not depend on the choice of represent-
ative g P G of the coset gN . Another representative is gn1 where n1 P N , and since N is abelian
we have

pgn1qnpgn1q´1 “ gn1npn1q´1g´1 “ gn1pn1q´1ng´1 “ gng´1

This shows that ngN is indeed well-defined.

We now show that H N . It is clear that n1N “ n, so it only remains to prove pngN qhN “

npgN qphN q for g, h P G. By definition,

pngN qhN “ hgng´1h´1

and using that H is abelian, we have

npgN qphN q “ nphN qpgN q “ nphgqN “ hgng´1h´1

This finishes the proof.

In the setting of the previous lemma, let H have the structure of a topological ring, and let
h0 P H be a fixed topological generator of H, meaning that the multiplicative subgroup xh0y Ď H
is dense. Notice that p1` T q P HJT K is a topological generator of HJT K. Therefore letting

p1` T qn :“ nh0 for n P N ,

combined with the action H N gives N the structure of a HJT K-module.

Lemma 1.2.6. Assume that the exact sequence of groups

1 Ñ N Ñ G Ñ HÑ 1

splits, that is, G » N ¸ H. Then G1 “ TN “ N h0´1 where G1 denotes the closure of the
commutator subgroup of G.

Proof. For any n P N we have

nh0´1 “ nh0n´1 “ h0nh
´1
0 n “ rh0, ns,

which proves N h0´1 Ď G1.

10



§1.2. Iwasawa’s theorem on the growth of the class number

Conversely, consider a commutator ra, bs for a, b P G. Since G » N ¸ H we may, by slight
abuse of notation, write a “ nα, b “ mβ where n,m P N , α, β P H.

ra, bs “ rnα,mβs

“ nαmβα´1n´1β´1m´1

“ nαmα´1βn´1β´1m´1 H is abelian

“ nmα
`

n´1
˘β
m´1

“ n
`

n´1
˘β
mαm´1 N is abelian

“ n1´βmα´1

Since h0 is a topological generator of H, we have β “ limiÑ8 h
ci
0 for some ci P Z. Therefore

1´ β “ lim
iÑ8

p1´ hci0 q “ lim
iÑ8

p1´ p1` T qciq

Since p1´ p1` T qciq P THJT K for all i P N, we have 1 ´ β P THJT K. Hence n1´β P TN , and
similarly mα´1 P TN , proving G1 Ď TN .

Apply Lemma 1.2.5 with G :“ G, N :“ X8 and H :“ Γ to obtain an action Γ X8 and
thus a Λ “ ZpJT K-module structure on X8. Fix a topological generator h0 :“ γ of Γ.

We will later use Lemma 1.2.6 to give an isomorphism between An and a certain quotient of
X8. To be able to use the Lemma, we need to verify the splitting condition. This will be done
using inertia groups, which behave nicely if the corresponding primes ramify totally, which will
turn out to be the case for some subextension K8{Ke of K8{K.

Thus we need to contemplate what happens when we pass from K8{K0 to a subextension
K8{Kn (see Table 1.1). The latter is also a Zp-extension with Galois group Γn :“ Γp

n

(the group
Γ is written multiplicatively); this has topological generator γp

n

. Since γ corresponds to p1` T q
and γ gets replaced by γp

n

, and T gets replaced by

p1` T qp
n

´ 1 “ T ¨
p1` T qp

n

´ 1

T

Therefore Λ becomes

Λn “ ZpJp1` T qp
n

´ 1K

Note that a module over Λn is finitely generated iff it is finitely generated over Λ. Finally notice
that L8 for K0 is the same as for Kn, with the Galois group becoming GalpL8{Knq “ Gp

n

.

K8{K0 K8{Kn

Galois group Γ Γn “ Γp
n

topological generator γ γp
n

Iwasawa algebra Λ “ ZpJT K Λn “ ZpJp1` T qp
n

´ 1K
generator T p1` T qp

n

´ 1
maximal unramified abelian extension L8 L8

Galois group G Gp
n

Table 1.1: Passing between extensions

11



Chapter 1. Zp-extensions

Claim 1.2.7. There are only finitely many prime ideals ramifying in K8{K, namely those above
p.

Proof. Let p be a prime in K which ramifies in K8{K. As there are only finitely many prime
ideals above p, it is sufficient to show that p lies above p in the extension K{Q.

K8

Km

K`

K

Q

p`Zp

q

p

P

total
ramification

I “ p`Zp
inertia group

Zp

Figure 1.3: Objects in the proof of Claim 1.2.7: fields and Galois groups on the left, prime ideals
on the right

We argue by contradiction: suppose p lies above some rational prime q ‰ p. (See Figure 1.3.)
Let I be the inertia group of p in K8{K. As p ramifies, I ‰ t0u, hence I “ p`Zp for some ` ě 0.
In particular, I is infinite, and as archimedean primes have inertia group of order either 1 or 2,
it follows that p is non-archimedean.

Now consider the fixed field of I: this is K`. Let P be a prime in K` above p. For every m ě `,
P ramifies totally in Km{K` by construction, and the ramification degree is rKm : K`s “ pm´`.
By the upcoming Lemma 1.2.8, NpPq ” 1 mod pm´` for all m ě ` where N denotes the absolute
norm. Taking m large enough, this implies P “ p1q which is a contradiction.

Lemma 1.2.8. Let F 1{F be a finite abelian extension of the algebraic number field F . Let p be
a prime of F not lying above rF 1 : F s. Then for any prime P of F 1 above p, the inertia group I
at P relative to p is cyclic and Nppq ” 1 mod #I.

F

F 1

Q

p

P

σ P D

kF

kF 1

σ̄

Figure 1.4: Objects in the proof of Lemma 1.2.8

Proof. Let kF “ OF {p and kF 1 “ OF 1{P be the residue fields (see Figure 1.4). Let D denote
the decomposition group at P relative to p in F 1{F . Recall the short exact sequence

1 Ñ I Ñ D Ñ GalpkF 1{kF q Ñ 1

σ ÞÑ σ̄

12



§1.2. Iwasawa’s theorem on the growth of the class number

Let π P PzP2 ‰ H, and consider the map

f : D Ñ kˆF 1

σ ÞÑ
σpπq

π

It is easily checked that fpστq “ fpσqσ̄fpτq for σ, τ P D. Since I “ tσ P D | σ̄ “ 1u, f |I is
a homomorphism. We will show that f |I is injective and has image in kˆF , which implies the
statement of the lemma.

We first show injectivity. Let σ P Ker f be an element of order m. It suffices to show σpπq “ π;
we know that σpπq ” π mod P2. Let k ě 2 be fixed. Then

σpπq ” π ` aπk mod Pk`1 (1.4)

for some a P OF 1 . Actually, we may assume a P OpF 1qI where pF 1qI denotes the fixed field.
Iterative application of σ to (1.4) yields

π “ σmpπq ” π ` a
`

πk ` σpπqk ` . . .` σm´1pπqk
˘

mod Pk`1

” π ` a
`

πk ` πk ` . . .` πk
˘

mod Pk`1 using (1.4)

“ π ` amπk mod Pk`1

Since p - rF 1 : F s, P - m, and thus a ” 0, σpπq ” π mod Pk`1 for all k ě 2. Hence σpπq “ π,
showing injectivity of f |I .

We now prove Im f |I Ď kˆF . Let σ P I; we will show that fpσq is fixed by all automorphisms
in GalpkF 1{kF q. Let τ̄ P GalpkF 1{kF q, τ P D. We have στ “ τσ since F 1{F is abelian, thus

fpστq “ fpτσq “ fpτqτ̄ fpσq,

hence fpσq “ τ̄ fpσq. This finishes the proof.

Remark 1.2.9. For a slightly shorter but less elementary proof of Claim 1.2.7 using local class
field theory, see [Was97, Proposition 13.2]. The proof of Lemma 1.2.8 is from [Lon77, page 94].

Let p1, . . . , ps be the primes ramifying in K8{K. Let I1, . . . , Is ď Γ be the respective inertia
subgroups. As in the proof of Claim 1.2.7, Ii “ p`iZp for some `i ě 0. Let

I “
s
č

i“1

Ii “ peZp,

where e “ maxp`1, . . . , `sq. Then I has fixed field Ke, and since GalpK8{Keq ď I ď Ii for all i,
we have that each p̄i ramifies totally in the subextension K8{Ke where p̄i is an extension of pi
to Ke.

Thus for any Zp-extension it is possible to pass to a subextension where every prime is
either unramified or totally ramified. From now on until the end of the proof of Claim 1.2.10
we assume K8{K itself to be such an extension; this will greatly simplify our formulæ. Using
the considerations summarised in Table 1.1, we will then generalise the results to an arbitrary
Zp-extension: this will be Claim 1.2.11.

The extension L8{K8 is unramified since each Ln{Kn is, hence Ii XX8 “ t1u. Also since
pi ramifies totally in K8{K, the inclusion Ii ãÑ G induces Ii “ Γ “ G{X8. Therefore

G “ IiX8 “ X8Ii i “ 1, . . . , s (1.5)

13



Chapter 1. Zp-extensions

In particular, Lemma 1.2.6 can be applied to obtain

G1 “ TX8 “ Xγ´1
8 (1.6)

Let σi P Ii be the element corresponding to γ under the above isomorphism Ii » Γ. Since
Ii Ď G “ X8I1, there exist ai P X8 for which σi “ aiσ1 (i “ 2, . . . , s). By Table 1.1, if we switch

from K0 to some extension Kn, γ gets replaced by γp
n

, thus σi becomes σp
n

i , and ai becomes

a
1`σ1`...`σ

pn´1
1

i “ νnai where

νn :“
γp

n

´ 1

γ ´ 1
“
p1` T qp

n

´ 1

T

This can be seen as follows:

σp
n

i “ paiσ1q
pn

“ aipσ1aiσ
´1
1 qpσ2

1aiσ
´2
1 q ¨ ¨ ¨ pσp

n
´1

1 aiσ
pn´1
1 qσp

n

1

“ a
1`σ1`...`σ

pn´1
1

1 σp
n

1

Claim 1.2.10. Let Y0 ď X8 be the Zp-submodule of X8 generated by a2, . . . , as P X8 and G1.
Let Yn “ νnY0. Then An » X8{Yn for n ě 0.

Proof. For n “ 0, L0{K0 is the maximal unramified abelian subextension of L8{K0 by con-
struction. Hence GalpL8{L0q is the closed subgroup of G generated by I1, . . . , Is and G1, or
equivalently, by I1, a2, . . . , as and G1. Hence

A0 “ GalpL0{K0q by definition

“ G{GalpL8{L0q Galois theory

“ X8I1{GalpL8{L0q (1.5)

“ X8{Y0 by definition

For n ě 0, our considerations above yield that Y0 becomes νnY0 “ Yn when passing from K
to Kn.

At this point we give up our assumption that every prime is either unramified or totally
ramified in K8{K. We generalise Claim 1.2.10 to arbitrary Zp-extensions K8{K with K8{Ke

being a subextension as above, i.e. in which all ramifying primes of K8{K ramify totally.

Claim 1.2.11. Let νn,e :“ νn{νe. Then An » X8{νn,eYe.

Proof. This is immediate from Claim 1.2.10 and

νn,eYe “
νn
νe
νeY0 “ νnY0 “ Yn

Claim 1.2.12. Ye is finitely generated over Λ. (Hence the same holds for X8 too since X8{Ye “
Ae is finite.)

Proof. Recall that Ye is finitely generated as a Λ-module iff it is finitely generated over Λe “
ZpJpp1 ` T qp

e

´ 1K. By Nakayama’s lemma (Lemma 1.1.5.1), Ye is finitely generated over Λe iff
Ye{pp, p1` T q

pe ´ 1qYe is finite. Since νe`1,e P pp, p1` T q
pe ´ 1q, we have

#
´

Ye

M

pp, p1` T qp
e

´ 1qYe

¯

ď # pYe{νe`1,eYeq ď # pX8{νe`1,eYeq “ #Ae`1 ă 8

14



§1.2. Iwasawa’s theorem on the growth of the class number

By the structure theorem of finitely generated Λ-modules, Ye is quasi-isomorphic to

Ee “ Λ‘r ‘
s
à

i“1

Λ{ppki q ‘
t
à

j“1

Λ{fjpT q
mj (1.7)

where each fj is distinguished.

Recall that our goal is to compute en up to constant for n large enough where pen “ #An.
We have

#An “ # pX8{νn,eYeq “ # pX8{Yeq# pYe{νn,eYeq

The first factor is some power of p independent of n, so we may focus only on Ye{νn,eYe. The
following lemma tells us that we can work with Ee{νn,eEe instead.

Lemma 1.2.13. Let Y , E be Λ-modules for which Y „ E and Y {νn,eY is finite for all n ě e.
Then there are n1 ě e, c ě 0 such that for n ě n1

# pY {νn,eY q “ pc# pE{νn,eEq

Proof. For each n ě e the quasi-isomorphism ϕ and νn,e give rise to the following commutative
diagram

Kerpνn,eϕq Kerϕ Kerpϕ mod νn,eq

0 νn,eY Y Y {νn,eY 0

0 νn,eE E E{νn,eE 0

Cokerpνn,eϕq Cokerϕ Cokerpϕ mod νn,eq

νn,eϕ ϕ ϕ mod νn,e

We will show that for large enough n, the cardinality of the kernels and cokernels stabilises. This
implies the statement of the Lemma.

Looking at representatives, we find

# Cokerpνn,eϕq ď # Cokerϕ (1.8)

By the snake lemma, we have an exact sequence

0 Ñ Kerpνn,eϕq Ñ KerϕÑ Kerpϕ mod νn,eq

Ñ Cokerpνn,eϕq Ñ CokerϕÑ Cokerpϕ mod νn,eq Ñ 0,

which implies the inequalities

# Kerpνn,eϕq ď # Kerϕ (1.9)

# Cokerpϕ mod νn,eq ď # Cokerϕ (1.10)

# Kerpϕ mod νn,eq ď # Kerpϕq# Cokerpνn,eϕq
(1.10)
ď # Kerpϕq# Cokerpϕq (1.11)

15



Chapter 1. Zp-extensions

Now observe what happens if we let n increase. Since νn,e | νn`k,e for k ě 0,

# Kerpνn`k,eϕq ď # Kerpνn,eϕq (1.12)

# Cokerpϕ mod νn`k,eq ě # Cokerpϕ mod νn,eq (1.13)

It is easily seen that multiplying representatives for Cokerpνn,eϕq by νn`k,e{νn,e gives represent-
atives for Cokerpνn`k,eϕq, hence

# Cokerpνn`k,eϕq ď # Cokerpνn,eϕq (1.14)

Putting all these inequalities together, it follows that

# Kerpνn,eϕq, # Cokerpνn,eϕq, and # Cokerpϕ mod νn,eq

stabilise for n ě n1 where n1 ě e is suitably large. The snake lemma yields

# Kerpνn,eϕq# Kerpϕ mod νn,eq# Cokerϕ “ # Kerpϕq# Cokerpνn,eϕq# Cokerpϕ mod νn,eq

Since every term except for # Kerpϕ mod νn,eq is constant for n ě n1, # Kerpϕ mod νn,eq must
stabilise as well. This completes the proof.

Now all that remains is to compute #pE{νn,eEq. This may be done for all three types of
direct summands in (1.7) separately. In what follows, we omit the indices i and j for brevity.
Note that what happens here is completely general and holds for any finitely generated torsion
Λ-module for which #pEe{νn,eEeq is finite (see Theorem 1.2.14).

Case 1. First consider Λ{pνn,eq. Since the polynomial νn,e is distinguished, the quotient is
infinite: this follows from the p-adic Weierstrass division theorem (Theorem 1.1.2). But as
#pYe{νn,eYeq is finite, so is #pEe{νn,eEeq, hence E has no free part, that is, r “ 0.

Case 2. For Λ{ppkq, we have

Λ{ppkq
M

νn,eΛ{pp
kq » Λ

L

pνn,e, p
kq

It is easily seen that the polynomial

νn,e “
p1` T qp

n

´ 1

p1` T qpe ´ 1

is distinguished. Using Weierstrass division (Theorem 1.1.2), we find that the above quotient
module has representatives that are polynomials mod pk of degree at most deg νn,e “ pn ´ pe,
hence the order is pkpp

n
´peq “ pkp

n
`constant.

Case 3. Consider Λ{pfpT qmq. Since f is distinguished, so is fm. Let d “ deg fm. Thus for
pn ě d,

p1` T qp
n

” 1` p ¨ ppolynomialq pmod fmq

and taking the pth power yields

p1` T qp
n`1

” 1` p2ppolynomialq pmod fmq
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Therefore

p1` T qp
n`2

´ 1 “
´

1` p1` T qp
n`1

` . . .` p1` T qpp´1qpn`1
¯´

p1` T qp
n`1

´ 1
¯

” pp1` p ¨ ppolynomialqq
´

p1` T qp
n`1

´ 1
¯

mod fm

Since
´

p1` T qp
n`2

´ 1
¯

`

p1` T qpn`1
´ 1

˘ “
νn`2,e

νn`1,e

and p1 ` p ¨ ppolynomialqq P Λˆ, we get νn`2,eΛ{pf
mq “ pνn`1,eΛ{pf

mq for all n ě n2 where
n2 ą e and pn2 ě d. Therefore

#
´

Λ{pfmq
M

νn`2,eΛ{pf
mq

¯

“ #
´

Λ{pfmq
M

pνn`1,eΛ{pf
mq

¯

“ #
´

Λ{pfmq
M

pΛ{pfmq
¯

#
´

pΛ{pfmq
M

pνn`1,eΛ{pf
mq

¯

“ pd#
´

Λ{pfmq
M

νn`1,eΛ{pf
mq

¯

because
Λ{pfmq

M

pΛ{pfmq » Λ{pp, fmq “ Λ
L

pp, T dq

and multiplication by p is injective on Λ{pfmq since pp, fq “ 1.

In conclusion, for all n ě n2 ` 1 we have

#
´

Λ{pfmq
M

νn`2,eΛ{pf
mq

¯

“ pdpn´n2´1q#
´

Λ{pfmq
M

νn2`1,eΛ{pf
mq

¯

“ pdn`constant

(The quotient on the right hand side must be finite because #pEe{νn,eEeq is finite.)

Combining the computations above—the k’s add up to µ and the d’s add up to λ—and letting
n0 :“ maxpn1, n2 ` 1q finishes the proof of Theorem 1.2.1.

As before, let Γn “ Γp
n

, and let EΓn :“ E{
`

γp
n

´ 1
˘

E denote the module of Γn-coinvariants.
As already alluded to, the calculation of #pE{νn,eEq in the end of the proof above gives us the
following:

Theorem 1.2.14 (Iwasawa). Let E be a finitely generated Λ-module such that EΓn is finite
for all n. Let #EΓn “ pen denote its cardinality. Then there exists c ě 0 such that for every
sufficiently large n we have en “ µpn ` λn` c.

1.3 Class field theory of Zp-extensions

In this section we collect some consequences of Iwasawa’s theorem as well as other statements
from the class field theory of Zp-extensions. These will later be used in the proof of the Iwasawa
main conjecture.

Remark 1.3.1. In the Zp-extension Qpµp8q{Qpµpq, the only prime ramifying is p, and it does so
totally. This will allow us to use some results of the previous as well as this section in this setting;
we will do this in the proof of the Iwasawa main conjecture.
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Chapter 1. Zp-extensions

Lemma 1.3.2. X8 :“ lim
ÐÝ

An is a finitely generated torsion Λ-module (called the unramified
Iwasawa module).

Proof. We have finitely generatedness by Claim 1.2.12, and being torsion was shown in Case 1
on page 16.

Lemma 1.3.3. Let K8{K0 be a Zp-extension with only one prime ramifying, and it doing so
totally. Then A0 “ 0 iff An “ 0 for all n ě 0, the latter being equivalent to X8 “ 0 by definition.

Proof. One direction is obvious. Suppose A0 “ 0. Apply Claim 1.2.10 with s “ 1: using (1.6),
this yields A0 » X8{Y0 “ X8{TX8. By assumption, X8{TX8 “ 0, therefore X8{pp, T qX8 “
0, hence X8 “ 0 by Nakayama’s lemma (Lemma 1.1.5.2).

Let us consider a Zp-extension K8{K0 where K0 is a number field. For all n ď 8 let Hn be the
p-Hilbert class field of Kn and Ωn be the unique maximal p-abelian extension unramified outside
p (also known as the unique maximal p-abelian p-ramified extension), with Xn :“ GalpΩn{Knq

being the Galois group. It will be convenient to use the language of idèles for the next theorem.
We recall the following notation: let Jn denote the idèles of Kn, and let

Un :“
ź

p a prime of Kn

Un,p

be the group of unit idèles where

Un,p :“

#

OˆKn,p if p is non-archimedean

Kˆn,p if p is archimedean

Furthermore let

Un,p :“
ź

p|p

Un,p, Un,rps :“
ź

`‰p

Un,` “
ź

λ-p
Un,λ, J8n :“

ź

v an infinite
prime of Kn

Kˆv

Finally let

En :“ OˆKn , Upmqn,p :“
 

u P Un,p
ˇ

ˇ@p | p : u ” 1 mod pm
(

for m ě 0,

and σn,p : En ãÑ Un,p be the diagonal embedding. Note that the sets U
pmq
n,p ,m ě 0 form a

fundamental system of neighbourhoods for Un,p.

Theorem 1.3.4. For all n ď 8 one has

GalpΩn{Hnq » Up1qn,p

M´

Up1qn,p X σn,pEn

¯

where overline means closure in Un,p.

Proof. Let n ă 8; the case n “ 8 will follow by taking projective limits. For the sake of
simplicity, we will omit the indices n (as we will be working on just one level of the Zp-extension
in the proof, these indices would be superfluous).

Note that we have
Up1qp

M´

Up1qp X σpE
¯

»
`

Up
L

σpE
˘

bZ Zp

Indeed, this follows from Up{U
p1q
p » pZ{pZqˆ and that U

p1q
p is a pro-p group [Neu99, Proposi-

tion 10.2]. So it remains to show

GalpΩ{Hq »
`

Up
L

σpE
˘

bZ Zp (1.15)
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§1.3. Class field theory of Zp-extensions

Class field theory gives us the following isomorphism (by the description of unramifying
primes in terms of idèles, cf. [Lan86, Chapter XI, §4, Theorem 4] or [Was97, Appendix on Class
Field Theory, Theorem 11])

GalpΩ{Kq »
´

J
M

UrpsJ8Kˆ
¯

bZ Zp

»
``

J
L

UpUrpsJ
8Kˆ

˘ `

UpUrpsJ
8Kˆ

L

UrpsJ8K
ˆ
˘˘

bZ Zp
»
``

J
L

UKˆ
˘ `

Up
L

pUp X UrpsJ8K
8q

˘˘

bZ Zp
»
`

GalpH{Kq
`

Up
L

σpE
˘˘

bZ Zp

In the last step we used J{UKˆ » GalpH{Kq in the first term. As for the second term, it is
easily seen that we have

Upmqp UrpsJ
8 X Up “ Upmqp E

Taking intersections for m ě 0 on both sides, it follows from the fact that the sets U
pmq
p form a

fundamental system of neighbourhoods that

Up{
`

Up X UrpsJ8K
8
˘

“ Up{σpE

Since H is the p-Hilbert class field of K, GalpH{Kq bZ Zp “ GalpH{Kq. Then (1.15) follows
from GalpΩ{Hq “ GalpΩ{Kq{GalpH{Kq. This completes the proof.

Corollary 1.3.5. X8 is a finitely generated Λ-module (called the p-ramified Iwasawa module).

Proof. X8 has a natural Λ-module structure. Since H0{K0 is a finite extension and X0 is a pro-
p-group, Theorem 1.3.4 yields a pseudo-isomorphism X0 „ U0,p{σ0,pE0. The group U0,p contains
a subgroup of Zp-rank pK0 : Qq and finite index [Neu99, §5.3], therefore rkZp U0,p “ pK0 : Qq,
and we obtain

r :“ rkZp X0 “ pK0 : Qq ´ rkZp σ0,pE0

Since X0 is the Galois group of the maximal abelian extension of K0 inside Ω8, we have that Zrp
is pseudo-isomorphic to the commutator subgroup of GalpΩ8{K0q. The commutator subgroup of
X8 is X8{TX8, so we get that X8{TX8 „ Zr´1

p where the p´1q in the exponent comes from the
difference between the base fields of X0 and X8: these are K0 resp. K8, with the Galois group
between them being Γ » Zp. From X8{TX8 „ Zr´1

p it follows that X8 is finitely generated
using Nakayama’s lemma (Lemma 1.1.5.1).

We will now specialise to the extension where Kn “ Qpµpn`1q, with which we will be working
in Chapter 3. (For more results on the above level of generality, cf. [Was97, §§13.1, 13.4–5] and
[Lan90, Chapter 5, §§5–6].) Note the apparent discrepancy of indexing between Kn and Qpµpn`1q;
it will stay with us in the sequel.

In this case, there is only one prime above p in Kn, namely p “ p1 ´ ζpn`1q. The objects
denoted by Fraktur letters above become the following; the Latin letters are the notation we will
use in Chapter 3.

• Un,p “ OˆQpµpn`1 q,p
local units,

• U
p1q
n,p “

 

u P OˆQpµpn`1 q,p

ˇ

ˇu ” 1 mod p1´ ζpn`1q
(

“: Un principal local units,

• En “ OˆQpµpn`1q
“: En global units,

• U
p1q
n,p X σn,pEn “ En X Un “: En

Under this notation, Theorem 1.3.4 yields the following exact sequence.
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Chapter 1. Zp-extensions

Corollary 1.3.6. There is an exact sequence

0 Ñ U8{E8 Ñ X8 Ñ X8 Ñ 0

We recall the notion of orthogonal idempotents of a group ring.

Definition 1.3.7. Let ∆ :“ GalpK0{Qq and let

eχ :“
1

p´ 1

ÿ

δP∆

χ´1pδqδ P Qr∆s

This eχ is called the orthogonal idempotent associated with a character χ of ∆ (such a χ is called
a character of the first kind in the literature).

For a slightly more general definition, see [Was97, §6.3] or [KKS12, Proposition 10.12]. A
thorough exposition is presented in [Sha, §2.8]. The properties of eχ which we will use in the
sequel, all of them easily verifiable, are collected in the following proposition.

Proposition 1.3.8. For all characters χ ‰ χ1 of ∆ and σ P ∆:

(1) e2
χ “ eχ (idempotence)

(2) eχeχ1 “ 0 (orthogonality)
(3)

ř

χ eχ “ 1 (completeness)
(4) eχσ “ χpσqeχ (eigenspace property)

From these it follows that any module M over the ring Qr∆s admits an orthogonal decomposition
M “

À

χ eχM .

As the proposition suggests, one should think of eχM as the χ-eigenspace. In particular,
summing eχM over just the even characters (those for which χp´1q “ 1) gives the plus part M`

of M , i.e. the largest submodule on which complex conjugation acts trivially. Summing over odd
characters (χp´1q “ ´1), we obtain the odd part M´, on which complex conjugation acts by
p´1q.

Lemma 1.3.9. eχX8 is torsion and peχX8q{pγ
pn ´ 1q » eχXn for all χ ‰ 1 even. (Here 1

denotes the trivial Dirichlet character.)

Proof. As above, Xn „ Zrp for r “ pKn : Qq ´ rkZp σn,pEn. We have pKn : Qq “ r1 ` 2r2 and
the second term is r1 ` r2 ´ 1 by Leopoldt’s conjecture [Was97, Corollary 5.32], so r “ r2 ` 1.
We lose one rank for the same reason as in the proof of Corollary 1.3.5, and complex embeddings
are killed by taking eχ for χ ‰ 1 even, which proves that eχX8 is torsion.

Since Ωn is the maximal abelian extension of Kn within Ω8, we have

GalpΩ8{Knq
1 “ Xγ

pn
´1

8

It follows that GalpΩ8{Ωnq “ Xγ
pn
´1

8 , and therefore

GalpΩn{K8q “ X8{X
γp
n
´1

8

The assertion will now follow from

eχ GalpΩn{K8q “ eχXn (1.16)

Since the difference between the two Galois groups GalpΩn{K8q and Xn “ GalpΩn{Knq, namely
GalpK8{Knq, is in the 1-eigenspace, the assertion (1.16) holds for χ ‰ 1 by orthogonality.
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Chapter 2

p-adic L-functions

In this chapter we very briefly survey the various equivalent definitions and some basic proper-
ties of p-adic L-functions. As our goal is to discuss and prove the Iwasawa main conjecture in
Chapter 3, this chapter covers only slightly more than necessary for this. In particular, we prove
nothing, and won’t state everything in the fullest possible generality.

Here we present two ways to define p-adic L-functions: one through p-adic interpolation, and
one by using so-called Stickelberger elements. The two definitions of course yield the same object.
The first method is due to Kubota and Leopoldt [KL64], while the second one was introduced
by Iwasawa [Iwa69b].

The definition by Kubota and Leopoldt is more analytical, which is why the p-adic L-functions
in this chapter are sometimes referred to as analytic p-adic L-functions, as opposed to algebraic
p-adic L-functions which arise as generators of certain characteristic ideals, to be discussed in
Chapter 3. The Iwasawa main conjecture asserts the equivalence of these two notions.

There is also a way to interpret p-adic L-functions as measures. We won’t discuss this here, as
we shall not need it in the sequel. We refer to [KKS12, §10.1(e–f)], [Was97, Chapter 12], [CS06,
§3.1–4.2], [Lan90, Chapters 2, 10], [Kob84, Chapter II]. The thesis [Cas08] also discusses various
different approaches to p-adic L-functions in detail.

2.1 Definition via p-adic interpolation

Let χ : ZÑ Q be a Dirichlet character of conductor f. By fixing an embedding Q ãÑ Cp, we may
regard χ as having values in Cp, where Cp denotes the field of complex p-adic numbers.

We recall the theory of Dirichlet L-functions.

Definition 2.1.1. For s P C, Re s ą 1, let

Lps, χq :“
8
ÿ

n“0

χpnq

ns

be the Dirichlet L-function.
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Chapter 2. p-adic L-functions

It admits an Euler product expansion for Re s ą 1

Lps, χq “
ź

p prime

1

1´ χppqps
(2.1)

Lps, χq has an analytic continuation to C; this is a meromorphic function, analytic everywhere
except at s “ 1 for χ “ 1, where 1 denotes the trivial character.

The p-adic L-function Lpps, χq is a p-adic meromorphic function Zp Ñ Cp interpolating the
values of Lps, χq at negative integers. In fact, for the interpolation to succeed, we need to remove
the Euler factor corresponding to p in (2.1). This is necessary because the p-Euler factor behaves
badly when it comes to being p-adically continuous.

For χ “ 1, an avatar of this phenomenon is given by Kummer’s congruences

`

1´ pr
˘

ζp1´ rq ”
`

1´ pr
1˘

ζp1´ r1q mod pn

for n, r, r1 P N, pp´ 1q - r, r ” r1 mod pp´ 1qpn. This is connected to the definition of the p-adic
zeta function, of which Lpps, χq is a generalisation.

Let ω : pZ{pZqˆ Ñ Zˆp denote the Teichmüller character.

Theorem 2.1.2. There exists a unique p-adic meromorphic function Lpp´, χq : Zp Ñ Cp such
that for all r P N,

Lpp1´ r, χq “
`

1´ χω´rppqpr´1
˘

Lp1´ r, χω´rq

Uniqueness comes from the set t1´ r | r P Nu being dense in Zp. It is easily seen that for an
odd character χ, the p-adic L-function Lpps, χq is identically zero.

Definition 2.1.3. Let κ : GalpQpµp8q{Qq
„
ÝÑ Zˆp be the cyclotomic character, defined by σpζq “

ζκpσq for all σ P GalpQpµp8q{Qq, ζ P µpn , n ě 1.

Then κ respects the following direct product structures on the domain and codomain:

GalpQpµp8q{Qq » GalpQpµp8q{Qpµpqq ˆGalpQpµpq{Qq “ Γˆ∆

Zˆp » µp´1 ˆ p1` pZpq » pZ{pp´ 1qZq ˆ Zp

In particular, κ sends the fixed topological generator γ of Γ to a topological generator of 1`pZp.

The following theorem states that p-adic L-functions are Iwasawa functions, meaning that
they are obtained by plugging κpγqs ´ 1 into a power series. As explained in [Was97, p. 243],
power series correspond to measures, thus the following statement also has a measure-theoretic
interpretation, which we won’t discuss here.

Theorem 2.1.4. There exists a unique element GχpT q P FracpZprχsJT Kq such that Lpps, χq “
Gχpκpγq

s ´ 1q. For f ‰ 1, pn for n ě 2, we have GχpT q P ZprχsJT K. Here Frac denotes the field
of fractions, and Zprχs is the ring extension of Zp obtained by adjoining the values of χ.

In Chapter 3, χ will be a character of ∆ » pZ{pZqˆ, thus GχpT q will be a power series
whenever χ ‰ 1. One form of the Ferrero–Washington theorem, referenced in Remark 1.2.3,
states that in this case, at least one coefficient of the power series GχpT q does not lie in the
maximal ideal of the discrete valuation ring Zprχs, and is therefore not divisible by p.

This section is based on [KKS12, §10.1] and [Was97, Chapters 4–5].
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§2.2. Definition via Stickelberger elements

2.2 Definition via Stickelberger elements

Let N P N, and consider the cyclotomic extension QpµN q{Q. There is an isomorphism of groups

GalpQpµN q{Qq » pZ{NZqˆ

pσa : ζN ÞÑ ζaN q Ø a

Definition 2.2.1. We define

ϑN :“
N
ÿ

a“1
pa,Nq“1

ˆ

1

2
´

a

N

˙

σ´1
a P QrGalpQpµN q{Qqs

to be the Stickelberger element of QpµN q.

Remark 2.2.2. In the literature, there exist slightly different versions of this definition. This one
will be convenient for defining the p-adic L-function, and also has the advantage of hinting at a
connection with zeta functions: the coefficient 1{2´ a{N is the negative of the value of the first
Bernoulli polynomial B1pxq “ x ´ 1{2 at x “ a{N , which agrees with the value of the partial
Riemann zeta function with respect to a modulo N at 0.

Definition 2.2.3. Let

ϑ1N :“
N
ÿ

a“1
pa,Nq“1

´

´
a

N

¯

σ´1
a P QrGalpQpµN q{Qqs,

also called the Stickelberger element by some authors. We call the ideal

IN :“ ϑ1NZrGalpQpµN q{Qqs X ZrGalpQpµN q{Qqs

the Stickelberger ideal of QpµN q.

Theorem 2.2.4 (Stickelberger). The Stickelberger ideal IN annihilates the ideal class group of
QpµN q.

Consider the tower of fields Qpµpnq for n ě 0. Fix n ě 1 for now and let χ be a character of
∆ “ GalpQpµpq{Qq with values in Cp. Let Qppχq denote Qp adjoined the values of χ. We have
an action of χ on the group ring of GalpQpµpnq{Qq » GalpQpµpnq{Qpµpqq ˆGalpQpµpq{Qq over
Q given by the map

p´qχ : QrGalpQpµpnq{Qqs Ñ QppχqrGalpQpµnq{Qqs
ÿ

σPGalpQpµpn q{Qpµpqq
τPGalpQpµpq{Qq

aσ,τ pσ, τq ÞÑ
ÿ

σPGalpQpµpn q{Qpµpqq
τPGalpQpµpq{Qq

aσ,τχpσqτ

Let χ be not equal to the Teichmüller character. Then one can show that by applying the above
action to Stickelberger elements, we obtain a projective system

ϑχpn P ZprχsrGalpQpµpnq{Qpµpqqs, n ě 1 (2.2)
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Chapter 2. p-adic L-functions

where Zprχs denotes the ring extension of Zp obtained by adjoining the values of χ. This has a
limit

ϑχp8 P lim
ÐÝ
n

ZprχsrGalpQpµpnq{Qpµpqqs “ ZprχsJΓK

where Γ “ GalpQpµp8{Qpµpqqq » Zp.

Theorem 2.2.5. Let Gχ´1ωpT q :“ ϑχp8 . Then Lpps, χq :“ Gχpκpγq
s´1q is the p-adic L-function,

where κ denotes the cyclotomic character.

The above method can be generalised for arbitrary Dirichlet characters, not just those of ∆.
This survey is based on [KKS12, §10.3(d)]. For details and proofs, see [Was97, Chapters 6–7],
Iwasawa’s original paper [Iwa69b], and his Princeton lectures [Iwa72].
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Chapter 3

The Iwasawa main conjecture

In the first section of this chapter we will formulate the Iwasawa main conjecture. Assuming
Vandiver’s conjecture, the main conjecture admits a short proof, this will be presented in Sec-
tion 3.2. In Section 3.3 we will give a brief outline of the proof of the main conjecture, going into
further details in Section 3.4; in these sections we temporarily waive the mathematical rigour in
order to focus on the essence of the the arguments. The proof itself will be given in Sections 3.5
to 3.8.

The aim was to give an account of the main conjecture that is as detailed and self-contained
as possible, by building on the previous chapters. One exception to self-containedness is that we
assume familiarity with the Iwasawa theory of local units. For this, we refer to [Lan90, Chapter 7]
or [Was97, §13.8]. We will also recall the necessary statements without proofs in Propositions 3.7.2
and 3.7.4.

The proof we present is due to Rubin. Our presentation is based on the appendix [Rub90] to
Lang’s book and Washington’s account [Was97, Chapter 15] of Rubin’s proof.

3.1 Statement

We will work with the cyclotomic tower Qpµpn`1q (n ě 0), and retain the notations of the
preceding chapters. The statement we are about to make is the Iwasawa main conjecture for
the plus part of these fields. More precisely, the statement will be about χ-eigenspaces of certain
Iwasawa modules where χ is an even character of GalpQpµpq{Qq; the characters being even means
that we are working with the plus part.

On the one hand, the characteristic ideal of an Iwasawa module kills the module by definition:
in particular, this can be applied to the module X8 and its orthogonal components eχX8. On the
other hand, we may consider the p-adic L-function Gχ´1ωpT q P Λ. As explained in Section 2.2,
Gχ´1ω “ ϑχp8 “ limϑχpn , where ϑχpn is obtained by applying a χ-action to the Stickelberger
element ϑpn . Recall that Stickelberger elements annihilate ideal class groups. The main conjecture
states that these two annihilating objects are essentially the same:

Theorem 3.1.1 (Iwasawa main conjecture, 1st form). For all odd Dirichlet characters χ of the
group GalpQpµpq{Qq not equal to the Teichmüller character ω, we have Char peχX8q “ Gχ´1ωΛ.
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Chapter 3. The Iwasawa main conjecture

Here we see that the main conjecture relates the algebraic object X8 with an analytic one,
the p-adic L-function. One may refer to the characteristic polynomial of eχX8 as the algebraic
p-adic L-function. Then the main conjecture fits into the Hilbert–Pólya conjecture which asserts
that zeta functions should arise as characteristic polynomials.

Recall that the p-adic L-function is identically zero for odd characters, hence the restriction
to odd characters χ in the statement (χ and χ´1ω have opposite parities). Also recall that the
p-adic L-function is a power series only for nontrivial even characters (Theorem 2.1.4), which is
why we need to exclude the case χ “ ω.

We may give an equivalent formulation for the p-ramified Iwasawa module X8 in place of the
unramified Iwasawa module X8. Recall that Ωn “ the maximal abelian p-extension of Qpµpn`1q

unramified outside p, and Xn “ GalpΩn{Qpµpn`1qq the Galois group, with X8 being the projective
limit.

Theorem 3.1.2 (Iwasawa main conjecture, 2nd form). For all χ ‰ 1 even Dirichlet characters
of GalpQpµpq{Qq we have CharpeχX8q “ Gχ

`

κpγqp1` T q´1 ´ 1
˘

Λ.

For the equivalence of Theorems 3.1.1 and 3.1.2 see [Rub90], where these are Theorems 8.1
and 8.9, respectively. The proof given there shows that Theorem 3.1.2 implies Theorem 3.1.1; it
is easily seen that each step can be reversed, proving the equivalence. The proof actually uses
Iwasawa’s theory of adjoints, which is not discussed in [Rub90]; for these details, see [Was97,
§§15.4–15.5]. The even/odd change comes from a Kummer duality type statement.

In this chapter we will give a proof of this theorem; for the proof, it will be more convenient
to consider yet another alternate formulation, for which we need to make further definitions.

Definition 3.1.3. We recall the following notations from the theory of cyclotomic extensions.

1. Un :“
 

u P Zprζpn`1sˆ
ˇ

ˇu ” 1 mod pζpn`1 ´ 1q
(

“ the local units of Qpµpn`1q congruent to
1 modulo the maximal ideal pζpn`1 ´ 1q, also referred to as the group of principal local
units;

2. En :“ Zrζpn`1s
ˆ “ the global units of Qpµpn`1q;

3. Cn :“ xζpn`1 , 1´ ζapn`1 | 1 ď a ď pn ´ 1y X En “ the cyclotomic units of Qpµpn`1q;

4. En :“ the closure of En X Un in Un;
5. Cn :“ the closure of Cn X Un in Un;
6. For all the above as well as Xn, we will use the index 8 to denote the projective limit taken

with respect to the relative norm maps, e.g. X8 “ lim
ÐÝ

Xn. We also let X8 “ lim
ÐÝ

An. (The
notation A8 is usually used to denote the injective limit of the groups An.)

Theorem 3.1.4 (Iwasawa main conjecture, 3rd form). For all even Dirichlet characters χ of
GalpQpµpq{Qq we have Char peχX8q “ Char

`

eχE8{eχC8
˘

.

We postpone checking that the Iwasawa modules of which characteristic ideals are considered
are indeed finitely generated torsion modules to Section 3.7.

Claim 3.1.5. Theorem 3.1.4 implies Theorem 3.1.2 (and hence Theorem 3.1.1).

Proof. Consider the following two exact sequences; the first one comes from Corollary 1.3.6, the
second one is self-defining.

0 Ñ eχU8{eχE8 Ñ eχX8 Ñ eχX8 Ñ 0 (3.1)

0 Ñ eχE8{eχC8 Ñ eχU8{eχC8 Ñ eχU8{eχE8 Ñ 0 (3.2)
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§3.2. Relation to Vandiver’s conjecture

These together with Lemma 1.1.13, which asserts the multiplicativity of characteristic ideals in
exact sequences, give the following:

Char peχX8q “ Char
`

eχU8{eχE8
˘

Char peχX8q multiplicativity for (3.1)

“ Char
`

eχU8{eχE8
˘

Char
`

eχE8{eχC8
˘

Theorem 3.1.4

“ Char
`

eχU8{eχC8
˘

multiplicativity for (3.2)

“ Gχ
`

κpγqp1` T q´1 ´ 1
˘

Λ [Lan90, Chapter 7, Theorem 5.2]

This finishes the proof.

Remark 3.1.6. Note that our 3rd formulation of the main conjecture concerns all even Dirichlet
characters χ, including the trivial character 1. This special case, however, will be treated separ-
ately from the case χ ‰ 1 in Section 3.8.1, and has a rather straightforward proof as compared
to the much more complicated χ ‰ 1 case, the proof of which occupies most of this chapter.

Remark 3.1.7. In the beginning of this section we gave a heuristic motivation via killing Iwasawa
modules. A more historically correct approach is viewing the main conjecture as the analogue
of the rationality of the zeta function of a curve over a finite field. This analogy is outlined in
Appendix A.3.

The characteristic ideal is a rather rough invariant: for instance, the modules Λ{paq ‘ Λ{pbq
and Λ{pabq have the same characteristic ideal. It stands to reason to raise the question whether
there is a finer version of the main conjecture. Vandiver’s conjecture implies a strengthening,
see Section 3.2. Kato [Kat07, §2.3.5] states that Kurihara devised a method in which multiple
p-adic L-functions are used simultaneously to obtain more data about the Λ-module structure.
Furthermore, using p-adic modular forms, Sharifi made a conjecture that can be understood to
be a refinement of the Iwasawa main conjecture [Sha18, Conjecture 5.5.2]. Finally we mention
that in all known cases, the characteristic polynomial of eχX8 has no double roots, and this
leads to a rather elementary proof of the main conjecture [KKS12, §10.3(d)].

3.2 Relation to Vandiver’s conjecture

Conjecture 3.2.1 (Vandiver). p does not divide the class number of Qpµpq`.

We will now show that Vandiver’s conjecture implies a stronger version of the 3rd form of
Iwasawa main conjecture. The proof we present is from [CS06, Proposition 4.5.3]; for a proof of the
2nd form, see [Was97, Theorem 10.16]. In Appendix A.3 we will discuss a heuristic interpretation
of the main conjecture assuming Vandiver’s conjecture.

Definition 3.2.2. We define the plus parts of the global and cyclotomic units defined in Defini-
tion 3.1.3. In the direct sums, χ runs through all even characters of GalpQpµpq{Qq, and projective
limits are taken with respect to relative norm maps.

1. E`n :“
À

eχEn “ En XQpµn`1
p q`

2. C`n :“
À

eχCn “ Cn XQpµn`1
p q`

3. E
`

n :“
À

eχEn “ the closure of E`n X Un in Un

4. C
`

n :“
À

eχCn “ the closure of C`n X Un in Un

5. E
`

8 :“
À

eχE8 “ lim
ÐÝ

E
`

n
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Chapter 3. The Iwasawa main conjecture

6. C
`

8 :“
À

eχC8 “ lim
ÐÝ

C
`

n

Theorem 3.2.3. Suppose Vandiver’s conjecture holds. Then we have X8 “ 0 and E
`

8{C
`

8 “ 0.

Proof. Recall that An denotes the p-part of the class group of Qpµpn`1q. Vandiver’s conjecture
asserts that A0 “ 0. Then Lemma 1.3.3 states X8 “ lim

ÐÝ
An “ 0, proving the first assertion.

For the second assertion, recall the analytic class number formula, (one form of) which states
that pE`n : C`n q “ # ClQpµpn`1q

`. This class number is prime to p by Vandiver’s conjecture
and Lemma 1.3.3. Thus we have a short exact sequence

0 Ñ C`n Ñ E`n Ñ pfinite group of order prime to pq Ñ 0

Therefore the same is true after taking intersections with Un:

0 Ñ C`n X Un Ñ E`n X Un Ñ pfinite group of order prime to pq Ñ 0

Now tensor this exact sequence of abelian groups by Zp; this is an exact functor because Zp is
flat over Z. The cokernel is killed, and we obtain an isomorphism

`

C`n X Un
˘

b Zp
»
ÝÑ

`

E`n X Un
˘

b Zp (3.3)

Recall that Leopoldt’s conjecture holds for totally real fields and states that rkZp E
`

n “

rkZpE
`
n XUnq. It follows that pE`n X UnqbZp “ E

`

n and pC`n X UnqbZp “ C
`

n . Therefore (3.3)

proves C
`

n “ E
`

n for all n ě 0. Taking projective limits yields the second assertion.

3.3 Outline of the proof

The proof of Theorem 3.1.4 will go as follows. Let eχX8 „
Àk

i“1 Λ{fiΛ; then the characteristic
polynomial of eχX8 is fχ “ f1 ¨ ¨ ¨ fk (warning: the character χ is suppressed in this notation for
brevity’s sake). Let hχ be the characteristic polynomial of eχE8{eχC8. Theorem 3.1.4 states
that fχ and hχ agree up to a unit of Λ, that is, fχΛ “ hχΛ.

For χ “ 1, the proof is simple, and uses only the class number formula, Leopoldt’s conjecture,
and Lemma 1.3.3; this case is treated in Section 3.8.1. For χ ‰ 1, we need much more elaborate
techniques, which we discuss now.

It is, in fact, sufficient to prove that fχ | hχ. The proof that this seemingly weaker statement
already implies fχΛ “ hχΛ will use Iwasawa’s theorem on the growth of an Iwasawa module
(Theorem 1.2.14) as well as the analytic class number formula and Leopoldt’s conjecture. (See
the beginning of Section 3.8.)

The proof of fχ | hχ will be done by finite induction: we will prove f1 ¨ ¨ ¨ fi | η
i`1hχ for

i “ 1, . . . , k where the η-factor comes from a technical difficulty. Notice that hχ already appears
in the base case. For i “ k, we get fχ | η

k`1hχ; luckily the η-factor can then be removed and we
get fχ | hχ, as desired.

The technique used in the induction step is as follows. Using the structure theorem of finitely
generated Λ-modules, we can represent fi by an ideal class ci (defined in Lemma 3.7.10) and hχ
by a morphism ψ (defined in (3.30) for i “ 1 and (3.31) for 2 ď i)—we will refer to this as the
first conversion step. Using heavy machinery from algebraic number theory, we will construct an
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eχX8 „
À

i Λ{fiΛ
fχ “

ś

fi
hχ

ci P eχAn ψ

λi

pαrq Euler system

pκrq inductive property

induction

fχ | hχ

Char peχX8q “: fχΛ “ hχΛ :“ Char
`

eχE8{eχC8
˘

structure
theorem

Chebotaryov
density

mod Mn

Mn Ñ8

class number formula Leopoldt’s conjecture

Figure 3.1: A simplified outline of the proof. Concepts with blue background are on the 8-level,
the rest are on finite levels.

auxiliary prime λi satisfying properties determined by both ci and ψ (that is, fi and hχ); this
will be our second conversion step. This will imply a divisibility relation like f1 ¨ ¨ ¨ fi | η

i`1hχ.

Actually, there is one more factor on the left that facilitates the induction. This has to
do with cyclotomic units. We will encode the cyclotomic units in the precise formulation of
the divisibility condition and in the construction of ψ in the base case. The way we do this
constitutes a crucial part of the proof: we will use an Euler system pαrq for the cyclotomic
units, introduced in Section 3.5. For our purposes, one may think of the Euler system as a
set of cyclotomic units admitting some nice properties that make it well fit to use in inductive
arguments (Proposition 3.5.5).

Remark 3.3.1. Another proof of the main conjecture, using modular forms, was given by Mazur
and Wiles. They proved the converse divisibility hχ | fχ. This underlines the point that the
‘luxury’ of only proving one of these divisibility relations is due to the presence of the analytic
class number formula, an analogue of which is not available in more general setups, thus neces-
sitating the usage of both Euler systems and modular forms. For an outline of the proof using
the modular form method (and the necessary background), see [Sha18, §4.3].

3.4 Technical details of the proof

In this section we will elaborate further on what actually goes into the proof of the main con-
jecture. Figure 3.1 shows the general strategy, while Figure 3.2 details the steps in the proof.
In the latter figure, in order to keep things as simple as possible, all arrows coming out of Pro-
position 3.7.2 are represented by just one dotted arrow. Within the Iwasawa theory part, the
structure theorem of finitely generated Λ-modules is used extensively; this is also not shown in
the figure.
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α1 generates the
real cyclotomic units
(Proposition 3.5.4)

telescoping identity
(Lemma 3.5.3)

Properties of the
Euler system

(Proposition 3.5.5)

technical lemma
(Lemma 3.5.7)

Kolyvagin derivatives
(Proposition 3.5.8)

valuations of
Kolyvagin derivatives
(Proposition 3.5.9)

valuations and indices
of Kolyvagin derivatives

(Proposition 3.5.13)
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second conversion step
(Proposition 3.6.1)

Chebotaryov
density theorem

Kummer theory

Kronecker–Weber
theorem

class field theory
class field theory
of Zp-extensions

(Section 1.3)

Iwasawa theory
of local units

properties of the
Iwasawa modules

(Proposition 3.7.2)

passing from 8-level
to nth level

(Proposition 3.7.4)

controlling the passing
for the units

(Lemma 3.7.6)

encoding the cyclotomic
units as a morphism

(Lemma 3.7.9)

encoding eχX8
as ideal classes

(Lemma 3.7.10)

growth of the modules
(Lemma 3.7.14)

Iwasawa’s theorem
(Theorem 1.2.14)

first conversion step
(Corollary 3.7.11)

fχΛ “ hχΛ
(main conjecture)

fχ | hχ
(Lemma 3.8.1)

growth of modules
(Lemma 3.8.2)

analytic class number formula
& Leopoldt’s conjecture

Euler system
Section 3.5

algebraic
number theory

Section 3.6
Iwasawa theory

Section 3.7

Figure 3.2: A complete outline of the dependencies of steps in the main conjecture’s proof.
Arrows mean that one concept is used in the proof of the other. Concepts with grey background
are considered to be prerequisites for the proof.
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Let us first detail the part of the proof taking place on finite levels.

We begin with the Euler system. We will explicitly define a set of cyclotomic units pαrq
where r will run over some subset S of the rational integers. These pαrq will enjoy two key
properties: α1 will generate the real cyclotomic units (Proposition 3.5.4), and the system pαrq
will satisfy the property of being an Euler system (Proposition 3.5.5). Euler systems, in general,
are cohomological objects obeying a generalisation of Proposition 3.5.5, and there is a whole
theory of their properties in this high generality. We will need to build up some of this theory
in our case: this will be done in Lemma 3.5.7 and Propositions 3.5.8 and 3.5.9. Since these
statements constitute part of a general theory, the explicit definition of pαrq won’t matter, just
the fact that it is an Euler system. While all these statements have a deeper cohomological truth
to them, neither the assertions nor their proofs will be done in cohomological terms, save for the
proof of Proposition 3.5.8, which uses Hilbert’s theorem 90.

More precisely, the part of the theory of Euler systems we need is the notion of a Kolyvagin
derivative pκrq associated with pαrq. This can be thought of as modulo Mn instance of the
Euler system pαrq where the modulus Mn will be chosen later. The reason for considering these
derivative classes is that this will allow us to obtain some results about their valuations over some
primes (Proposition 3.5.9), which will be well suited for use in an induction. We have no such res-
ults for pαrq. We will restate these results in terms of valuations and indices (Proposition 3.5.13);
this is the form we will use in proving fχ | hχ.

The second conversion step given in Proposition 3.6.1 is a rather technically loaded part
of the proof: we will need the full arsenal of algebraic number theory. What happens here is that
given an ideal class ci and a morphism ψ, we want to find a prime λi P ci satisfying some nice
property with respect to ψ. The prime will be given by the Chebotaryov density theorem (so
in fact, there will be infinitely many such primes) applied to some large field extension. This
extension has to, on one hand, encode ci, which can be done via class field theory. On the other
hand, we also need to encode the morphism ψ, for which Kummer theory will prove to be an
effective tool. During these steps, there will be several technical details to attend to; at one point
we will also need to invoke the Kronecker–Weber theorem.

Now we discuss the steps that have to do with the8-level. The most important part Iwasawa
theory plays is encoding fχ and hχ so that we may do induction on finite levels. In order to do
this, we need to describe the behaviour of several Iwasawa modules. Some information has already
been obtained in Chapter 1. We will also need the Iwasawa theory of local units as described
in [Lan90, Chapter 7, Theorem 5.1]. These statements will be recalled in Propositions 3.7.2
and 3.7.4, and can be treated as blackboxes.

In particular, we will describe the natural maps from the8-level to finite levels. For all but one
of the Iwasawa modules involved, these will be as simple as can be, that is, we will have natural
isomorphisms. The only exception is E8, where all we can say is that the natural morphism has
finite kernel and cokernel (Lemma 3.7.6). This will manifest in the technical difficulty that when
we encode hχ as a morphism (Lemma 3.7.9), an η-factor will emerge, which will represent the
annihilator of the aforementioned kernel and cokernel. This is the η that was mentioned in the
previous section.

Finally we will need a lemma about the growth of the modules involved (Lemma 3.7.14), one
application of which will be choosing the modulus Mn for the Kolyvagin derivatives in terms
of n. The proof of fχ | hχ will then be done by putting all the previous results together: our
first conversion step Corollary 3.7.11 turns fχ and hχ into objects on the nth level so that our
second conversion step can be applied. The fact that α1 generates the real cyclotomic units
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establishes a connection between the Euler system and hχ, and the result Proposition 3.5.13 on
Kolyvagin derivatives makes the induction work. Finally letting nÑ8 makes Mn Ñ8, making
our modulo Mn results hold on the 8-level. The η-factor can be removed either through two
opportune choices of η or by invoking the Ferrero–Washington theorem.

To prove that fχ | hχ implies fχΛ “ hχΛ, we will use a simple consequence of Iwasawa’s
theorem (Lemma 3.8.2), which will be applicable as per the result on the growth of the modules
involved. Then the analytic class number formula and Leopoldt’s conjecture finish the proof.

3.5 An Euler system for the cyclotomic units

We begin by fixing some notation. As always, p will be an odd prime. We will be working on
the nth level of the Zp-extension Qpµp8q{Qpµpq, n P N. In order to emphasise this, most of our
notation will feature the level n. In the present and the next section we will not be considering
any other levels. Let Fn “ Qpµpn`1q` and Gn :“ GalpFn{Qq. In what follows, ` will always
denote a rational prime. Let

S :“
!

r P N
ˇ

ˇ

ˇ
r square-free, ` | r ñ ` ” ˘1 pmod pn`1q

)

Thus S is the set of positive integers that are a product of distinct primes, all of which split in
Fn{Q. Fix Mn P N to be an odd integer (to be chosen later as some large power of the odd prime
p, also depending on n), and define a mod Mn version of S:

SMn :“
!

r P S
ˇ

ˇ

ˇ
` | r ñ ` ” 1 pmod Mnq

)

Remark 3.5.1. The reason we will be working modulo Mn later is that this will enable us use the
theorems about M th

n powers and M th
n roots of unity in field extensions (e.g. Kummer theory).

These will play a substantial role in proving Propositions 3.6.1 and 3.5.9.

While it may seem that we lose information in the modulo Mn reduction, this is not exactly
the case. At the very end of the proof of the Iwasawa main conjecture (Section 3.8.2), we will
set Mn :“ pn`N (for some N P N), and let n range over N. We will obtain divisibility properties
modulo Mn for all n, which will together give a divisibility relation without any reduction.

Remark 3.5.2. We will sometimes use additive notation in the multiplicative group Fnpµrq
ˆ, as

is standard practice. While this notation may be admittedly confusing, it saves us from using
several levels of exponents, thus—hopefully—making our computations easier to follow.

Let r P S and Gn,r :“ GalpFnpµrq{Fnq » GalpQpµrq{Qq » pZ{rZqˆ. For ` ” ˘1 pmod pn`1q,
the group Gn,` is cyclic; let σ` be a fixed generator. Let

Nr :“
ÿ

σPGn,r

σ P ZrGn,rs (3.4)

denote the relative norm in the extension Fnpµrq{Fn. Further define the derivative operators

D` :“
`´2
ÿ

i“1

iσi` P ZrGn,`s and Dr :“
ź

`|r

D` P ZrGn,rs (3.5)

The derivative operators will only be used later, when we start working modulo Mn; they will
give rise to the Kolyvagin derivative of our Euler system.
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§3.5. An Euler system for the cyclotomic units

Lemma 3.5.3 (Telescoping identity). pσ` ´ 1qD` “ p`´ 1q ´N`.

Proof. This follows from the definitions (3.4) and (3.5):

pσ` ´ 1qD` “ pσ` ´ 1q
`´2
ÿ

i“1

iσi`

“

`´2
ÿ

i“1

`

iσi`1
` ´ iσi`

˘

“ p`´ 2qσ`´1
` ´

`´2
ÿ

i“1

σi`

“ p`´ 1q ´
`´1
ÿ

i“1

σi`

“ p`´ 1q ´N`

For r P S define

αr :“

¨

˝ζpn`1

˜

ź

`|r

ζ`

¸

´ 1

˛

‚

¨

˝ζ´1
pn`1

˜

ź

`|r

ζ`

¸

´ 1

˛

‚

where ζpn`1 and the ζ`’s are fixed primitive ppn`1qth resp. `th roots of unity. These numbers αr
form a so-called Euler system. The properties of this system will be given in Propositions 3.5.4
and 3.5.5. There is a key distinction between the natures of these two propositions. The former
is about this particular Euler system; it will be used towards the end of the proof of the main
conjecture. It will enable us to establish a connection between the Euler system and the Iwasawa
module of cyclotomic units, and thus hχ. This will be beneficial because it will allow us to
use the general theory of Euler systems, which is what Proposition 3.5.5 and the subsequential
statements of this section are about.

In general, an Euler system is a collection of cohomology classes satisfying conditions similar
those in Proposition 3.5.5. Rubin [Rub00] gives a general treatment of Euler systems, and all
statements in this section after Proposition 3.5.5 can be found there, albeit in vastly larger
generality (and hence much longer proofs). (For a quick survey on what Euler systems represent
in different settings, see [Kat07, §2.5].)

Proposition 3.5.4. For all nontrivial even characters χ of ∆, eχα1 generates the eχΛΓn :“
eχZprΓp

n

s “ eχZprGalpQpµp8q{Qpµpn`1qqs-module eχCn.

Proof. By definition, α1 “
`

ζpn`1´1
˘`

ζ´1
pn`1´1

˘

. The group C`n of cyclotomic units of Qpζpn`1q`

is generated by ´1 and the elements

βg :“ ζ
p1´gq{2
pn`1 ¨

1´ ζg
pn`1

1´ ζpn`1

, 1 ă g ă
1

2
pn`1, p - g;

see [Was97, Lemma 8.1]. Let σg P GalpQpζpn`1q{Qq be defined by σgpζpn`1q “ ζg
pn`1 . Then we

have pσg´1qα1 “ p1`σ´1qβg. It is easily checked that βg “ σ´1βg, thus we obtain pσg´1qα1 “

β2
g . So far we have been working in the group C`n . It follows that in the ΛΓn -module Cn we have

1
2 pσg ´ 1qα1 “ βg as 2 is invertible in ΛΓn . The assertion then follows using that χ is even.
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Proposition 3.5.5 (Properties of the Euler system). For all r P S and ` | r we have the
following:

(1) αr P Fnpµrq
ˆ.

(2) αr is a cyclotomic unit if r ą 1.
(3) αr ” αr{` modulo every prime above `.
(4) N`αr “ pFr`´1qαr{` where Fr` denotes the Frobenius of `.

Proof. The first two assertions are easily seen. For (3) one only needs to observe that ζ` ” 1
modulo all primes above `. It remains to show (4).

N`αr “ N`

¨

˝ζpn`1

˜

ź

q|r

ζq

¸

´ 1

˛

‚N`

¨

˝ζ´1
pn`1

˜

ź

q|r

ζq

¸

´ 1

˛

‚

“
ź

τPGn,`

τ

¨

˝ζpn`1

˜

ź

q|r

ζq

¸

´ 1

˛

‚

ź

τPGn,`

τ

¨

˝ζpn`1

˜

ź

q|r

ζq

¸

´ 1

˛

‚

“

`´1
ź

i“1

¨

˚

˚

˚

˚

˝

ζi` ζpn`1

˜

ź

q| r`

ζq

¸

loooooooomoooooooon

A

´1

˛

‹

‹

‹

‹

‚

`´1
ź

i“1

¨

˚

˚

˚

˚

˝

ζi` ζ
´1
pn`1

˜

ź

q| r`

ζq

¸

loooooooomoooooooon

B

´1

˛

‹

‹

‹

‹

‚

(3.6)

“

ś`´1
i“0

`

ζi`A´ 1
˘

A´ 1
¨

ś`´1
i“0

`

ζi`B ´ 1
˘

B ´ 1

“
A` ´ 1

A´ 1
¨
B` ´ 1

B ´ 1
(3.7)

“
ζ`pn`1

ś

q| r`
ζ`q ´ 1

ζpn`1

ś

q| r`
ζq ´ 1

¨
ζ´`
pn`1

ś

q| r`
ζ`q ´ 1

ζ´1
pn`1

ś

q| r`
ζq ´ 1

“ pFr`´1qαr{` (3.8)

In (3.6) we used that τpζpn`1q “ ζpn`1 and @q ‰ ` : τpζqq “ ζq. The last step (3.8) uses

ζ`pn`1 “ ζ˘1
pn`1 and ζ´`

pn`1 “ ζ¯1
pn`1 which hold since ` ” ˘1 mod m. The step (3.7) follows from

the following lemma:

Lemma 3.5.6. Let p be a prime, η a primitive pth root of unity. Then in any field F containing
Qpµpq, the following holds for any X P F :

p´1
ź

i“0

`

ηiX ´ 1
˘

“ Xp ´ 1

Proof. This is immediate from the factorisation of Xp ´ 1:

Xp ´ 1 “
p´1
ź

i“0

`

X ´ ηi
˘

“

p´1
ź

i“0

`

ηp´1´iX ´ 1
˘

ηppp´1q{2 “

p´1
ź

i“0

`

ηiX ´ 1
˘

¨ 1

This finishes the proof of Proposition 3.5.5.

From now on until the end of this section, it won’t matter how our Euler system αr was
defined, just that it satisfies the properties listed in Proposition 3.5.5.
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§3.5. An Euler system for the cyclotomic units

We will now start working modulo Mn (q.v. Remark 3.5.1). In Proposition 3.5.8 we will
introduce mod Mn representatives κr of αr. The advantage of these is that we will be able to
describe their valuations mod Mn in Proposition 3.5.9.

Lemma 3.5.7. For r P SMn
we have Drαr P

´

Fnpµrq
ˆ{ pFnpµrq

ˆq
Mn

¯Gn,r
, i.e. Drαr is fixed

under Gn,r up to M th
n powers.

Proof. We do induction on the number of prime factors of r. For r “ 1, the statement is trivial
as G1 “ 1. For the induction step, let r “ ` ¨ r` . Keep in mind that we are using additive notation
in the multipicative group Fnpµrq

ˆ.

pσ` ´ 1qDrαr “ pσ` ´ 1qD`Dr{`αr definition of Dr

“ pp`´ 1q ´N`qDr{`αr Lemma 3.5.3

“ p`´ 1qDr{`αr ´Dr{`N`αr Dr{` and N` commute

The commuting of Dr{` and N` follows from their definition and pr{`, `q “ 1; in particular,

we use that r is square-free. Observe that the first term p` ´ 1qDr{`αr is an M th
n power since

` ” 1 mod Mn. For the second term, we have

Dr{`N`αr “ Dr{`pFr`´1qαr{` Proposition 3.5.5.4

“ pFr`´1qDr{`αr{` pFr`´1q and Dr{` commute

Dr{`αr{` is an M th
n power by induction, and M th

n powers are preserved by pFr`´1q. Thus pσ` ´

1qDrαr is an M th
n power. Since Gn,r “ xGn,r{`, σ`y, this finishes the proof.

Proposition 3.5.8. For every r P SMn there is a unique κr P F
ˆ
n { pF

ˆ
n q

Mn for which κr ”

Drαr mod pFnpµrq
ˆq
Mn .

Proof. This can be seen using Galois cohomology: we may define κr to be the image of Drαr
under the following composition of isomorphisms:

˜

Fnpµrq
ˆ

pFnpµrqˆq
Mn

¸Gn,r
»
ÝÑ H1

`

Fn{Fnpµrq, µMn

˘Gn,r »
ÐÝ H1

`

Fn{Fn, µMn

˘ »
ÐÝ

Fˆn
pFˆn qMn

Drαr κr

The first and last isomorphisms come from Hilbert’s theorem 90 [Ser02, II.§1.2]. The isomorphism
in the middle comes from the inflation–restriction exact sequence (aka the Hochschild–Serre
spectral sequence):

0 Ñ H1
´

Fnpµrq{Fn, µ
GalpFn{Fnpµrqq
Mn

¯

Ñ H1
`

Fn{Fn, µMn

˘

Ñ H1
`

Fn{Fnpµrq, µMn

˘Gn,r

Ñ H2
´

Fnpµrq{Fn, µ
GalpFn{Fnpµrqq
Mn

¯

Ñ H2
`

Fn{Fn, µMn

˘

Here Hi
´

Fnpµrq{Fn, µ
GalpFn{Fnpµrqq
Mn

¯

“ 0 for i “ 1, 2 (recall that Mn is a power of p, and r is

prime to p), which gives us the isomorphism above.

The collection of these κr is called the Kolyvagin derivative of the Euler system αr (cf. [Rub00,
§4.4]). In the upcoming Proposition 3.5.9, we will need a more explicit description of κr; for this,
we make the construction more direct.
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Q

Fn

Fnpµr{`q

Fnpµ`q

Fnpµrq

xσ`y

`

λ

λ1 X Fnpµr{`q

λ1

total
ramification

Figure 3.3: Objects in the proof of Proposition 3.5.9: fields on the left, prime ideals on the right

Proof (Second proof of Proposition 3.5.8). Consider the cochain

Gn,r “ GalpFnpµrq{Fnq Ñ Fnpµrq
ˆ

σ ÞÑ ppσ ´ 1qDrαrq
1{Mn

This cochain is well-defined by Lemma 3.5.7, and it is easily seen to be a 1-cocycle. As the
cohomology group H1pFnpµrq{Fn, Fnpµrq

ˆq “ 0 is trivial, there is some βr P Fnpµrq
ˆ (unique

up to Fˆn ) satisfying

pσ ´ 1qβr “ ppσ ´ 1qDrαrq
1{Mn (3.9)

for all σ P Gn,r. Then

κr :“
Drαr

βMn
r

(3.10)

satisfies the conditions of Proposition 3.5.8.

The following is a key result about Kolyvagin derivatives; it corresponds to Theorems 4.5.1
and 4.5.4 in [Rub00]. (Rubin’s somewhat obscure way of phrasing it [Rub90, Proposition 2.4] is
made explicit in [CS06, §5.4] and in [Was97, Proposition 15.12].)

Recall that we fixed a generator σ` of Gn,` “ GalpFnpµ`q{Fnq » pZ{`Zqˆ. There is a mod `
primitive root x associated with σ`, meaning that σ`pζ`q “ ζx` where ζ` is the previously fixed
primitive `th root of unity.

Proposition 3.5.9 (Kolyvagin). Let r P SMn , ` a rational prime, λ a prime of Fn above `. Then

(1) If λ - r then ordλpκrq ” 0 mod Mn where ordλ denotes the λ-adic valuation.
(2) If λ | r then ordλpκrq ” ´a mod Mn where κr{` ” xa mod λ for a P Z, and x is the mod `

primitive root associated with σ`.

Remark 3.5.10. Note that this statement depends heavily on fixed choices. If we change our
choice of σ`, then x changes as well, but so does the derivative operator Dr, and consequently,
the image κr of Drαr. If we change our choice of ζ`, this also affects x, but it alters αr too, and
therefore Drαr and thus κr as well.

Proof. First suppose λ - r. Then by Lemma 3.5.7, Drαr is a unit in Fnpµrq thus (3.10) yields
pκrq “ pβ

´1
r qMn as ideals of Fnpµrq. Since λ is unramified in Fnpµrq{Fn, this proves ordλpκrq ”

0 mod Mn.
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Now let λ | r and fix a mod ` primitive root x. Then x is a primitive root mod λ as well, so
we can indeed write κr{` ” xa mod λ for some a P Z. Let λ1 be a prime of Fnpµrq above λ; then

x is still a primitive root mod λ1 so we have Dr{`αr{` ” xa
1

mod λ1 for some a1 P Z. By (3.10) we
have

a ” a1 pmod Mnq (3.11)

Now by a calculation similar to that in the proof of Lemma 3.5.7:

pσ` ´ 1qβr “ pσ` ´ 1qDrα
1{Mn
r by (3.9)

“ pσ` ´ 1qD`Dr{`α
1{Mn
r by (3.5)

“ p`´ 1´N`qDr{`α
1{Mn
r Lemma 3.5.3

“ Dr{`α
p`´1q{Mn
r ´Dr{`N`α

1{Mn
r Dr{` and N` commute

By Proposition 3.5.5.4 we have N`α
1{Mn
r “ pFr`´1qα

1{Mn
r . Since ` ” 1 mod Mn, this means

N`α
1{Mn
r “ 1. Thus

pσ` ´ 1qβr “ Dr{`α
p`´1q{Mn
r

” Dr{`α
p`´1q{Mn

r{` by Proposition 3.5.5.3

mod all primes above `. Hence pσ` ´ 1qβr ” xb mod λ1 where

b :“ a1p`´ 1q{Mn (3.12)

Also let

c :“ ordλ1 βr (3.13)

Since p1 ´ ζ`q is a uniformiser, i.e. ordλ1p1 ´ ζ`q “ 1, we have βr “ p1 ´ ζ`q
cy for some λ1-unit

y P Fnpµrq (i.e. ordλ1 y “ 0). Then we have

xb ” pσ` ´ 1qβr “
´

p1´ ζ`q
σ`´1

¯c

yσ`´1 ” xc mod λ1 (3.14)

To justify the last congruence in (3.14), we need to make two simple observations. First, by
definitions of σ` and x

pσ` ´ 1q p1´ ζ`q “
1´ ζx`
1´ ζ`

“ 1` ζ` ` ζ
2
` ` . . .` ζ

x´1
`

“ 1` rζ` ´ 1s `
“

ζ2
` ´ 1

‰

` . . .`
“

ζx´1
` ´ 1

‰

` px´ 1q

” x mod λ1

Here the last step uses that the expressions in square brackets are all divisible by pζ` ´ 1q P λ1.

Secondly, we have σ`y ” y mod λ1 since σ` is in the inertia group of λ1 as this is totally
ramified in Fnpµrq{Fnpµr{`q.

Now (3.14) implies

b ” c mod `´ 1 (3.15)
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Therefore

ordλ κr “
1

`´ 1
ordλ1 κr λ “ pλ1q`´1

“
´1

`´ 1
ordλ1

`

βMn
r

˘

pκrq “ pβ
´1
r qMn

“
´Mnc

`´ 1
definition (3.13) of c

”
´Mnb

`´ 1
by (3.15)

“ ´a1 definition (3.12) of b

” ´a mod Mn by (3.11)

Proposition 3.5.9.2 establishes a connection between valuations and indices of Kolyvagin
derivatives in the following sense.

Definition 3.5.11. As before, let x be the mod ` primitive root associated with σ`. Let w P Fˆn
be coprime to ` and λ a prime of Fn above `. Then for any σ P Gn “ GalpFn{Qq define the index
indσλ w P pZ{p`´ 1qZq by

w ” xindσλpwq mod σλ

It will prove useful to extend this connection to valuations and indices of all Galois conjugates
of a prime λ. To this end, we make the following definitions.

Definition 3.5.12. We define the collections of valuations and indices as follows:

ordλpwq :“
ÿ

σPGn

ordσλpwqσ P ZrGns

indλpwq :“
ÿ

σPGn

indσλpwqσ P pZ{MnZqrGns

The operators ordλ and indλ thus collect information about how w behaves with respect to
all the primes above `. We have the following proposition.

Proposition 3.5.13.

ordλ peχκ`1¨¨¨`iq ” ´ indλ
`

eχκ`1¨¨¨`i´1

˘

mod Mn

Proof. Follows directly from Definition 3.5.11 and Proposition 3.5.9.2 and the fact that every
expression involved is ZrGns-linear.

Proposition 3.5.13 is how we will ultimately make use of the nice properties of the Euler
system in the proof of the main conjecture.

3.6 The second conversion step

We continue dealing with objects that live entirely on finite levels. The first conversion step,
which logically precedes the topic of the present section, will be therefore discussed later, as its
point is transforming objects from the 8-level to the nth level (Corollary 3.7.11).
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§3.6. The second conversion step

Note that up until now we have not made any assumptions about Mn other than it being
an integer. In the upcoming Proposition 3.6.1 we will already assume that Mn is a power of an
odd prime, but Mn will only be explicitly chosen towards the end of the proof of the Iwasawa
main conjecture (q.v. Remark 3.5.1). The following Proposition 3.6.1 will be the tool used in
each inductive step in the proof of the main conjecture.

Proposition 3.6.1. Let p be an odd prime, A :“ pClFnqbZZp the p-part of the ideal class group
of Fn “ Qpµpn`1q`, c P A an ideal class, Mn a power of p, W a finite Gn “ GalpFn{Qq-submodule
of Fˆn {pF

ˆ
n q

Mn and
ψ : W Ñ pZ{MnZqrGns

a Galois-equivariant map. Then there exist infinitely many primes satisfying the following four
properties:

(1) λ P c;
(2) ` ” ˘1 mod m and ` ” 1 mod Mn where ` is the rational prime under λ;
(3) @w PW : ordλ w ” 0 mod Mn;
(4) Du P pZ{MnZqˆ : indλpwq “ uψpwq.

Remark 3.6.2. Proposition 3.6.1 will be used in the proof of the Iwasawa main conjecture to
inductively choose primes λi (q.v. Remark 3.7.12). We won’t actually need the fact that there
are infinitely many such primes λ, just that there is at least one, but as it will be evident, the
natural way of proving this already yields the existence of infinitely many λ’s. The ideal class
c will come from factors fi of fχ, the homomorphism ψ from hχ. Properties (1) and (4) thus
assert that λi represents both fi and hχ. The point of property (2) is that ` is a prime factor in
the indexing set SMn

of mod Mn Kolyvagin derivatives. Property (3) is only technical, asserting
that it is valid to consider indices on W as we do in (4).

Remark 3.6.3. Proposition 3.6.1 can also be found in [Rub87], with a simpler version being
present in [Tha88]. Greither [Gre92] gives a variant of Proposition 3.6.1 that is also valid for
p “ 2.

Proof. The proof is based upon Chebotaryov’s density theorem, which we recall now [Lan86,
Chapter VIII, §4, Theorem 10].

Theorem 3.6.4 (Chebotaryov). Let K{k be a finite Galois extension of degree N with Galois
group G, let σ P G, and let s be the number of elements in the conjugacy class of σ. Then the
primes p of k which are unramified in K{k and above which there is a prime P | p such that
σ “ pP,K{kq have density s{N . In particular, there are infinitely many such primes.

In view of this, what we need to do is find an extension of Fn the Galois group of which
encodes all the data in the setup of Proposition 3.6.1. Then the lambdas will be obtained by
applying Theorem 3.6.4 to a suitably chosen element of this Galois group.

Let H be the p-Hilbert class field of Fn; then A » GalpH{Fnq by class field theory. Now
consider Figure 3.4; HFnpµMn

,W 1{Mnq{Fn will play the role of K{k in Theorem 3.6.4. We now
verify that this is the composite of the extensions H{Fn and FnpµMn

,W 1{Mnq{Fn. This will allow
us to choose an element of GalpHFnpµMn

,W 1{Mnq{Fnq that has suitable restrictions to H and
FnpµMn

,W 1{Mnq.

Claim 3.6.5. FnpµMn
q XH “ Fn

Proof (Proof of Claim 3.6.5). The extension FnpµMn
q X H of Fn “ Qpµmq` is abelian. By

the Kronecker–Weber theorem there is some N that is a multiple of pn`1 and FnpµMn
q XH Ď
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Q

Fn

FnpµMn
q

FnpµMn ,W
1{Mnq

H

HFnpµMn
,W 1{Mnq

a P A

Figure 3.4: Field extensions in the proof of Proposition 3.6.1

QpµN q. The extension FnpµMn
qXH{Fn is unramified, so by the ramification theory of cyclotomic

extensions, FnpµMn
q XH is either Qpµpn`1q or Qpµpn`1q` “ Fn. Since Qpµpn`1q{Qpµpn`1q` has

degree 2, it is not a p-extension. Hence we must have FnpµMn
q XH “ Fn.

Claim 3.6.6. FnpµMn
,W 1{Mnq XH “ Fn

Proof (Proof of Claim 3.6.6). Let τ P GalpFnpµMn
q{Fnq be the complex conjugation automorph-

ism. Since Fn “ Qpµpn`1q`, τ acts trivially on Fn and since W ď Fˆn {pF
ˆ
n q

Mn , the action is
also trivial on W . The action on µMn

is by p´1q, so it follows that τ acts by p´1q on the group
GalpFnpµMn ,W

1{Mnq{FnpµMnqq.

On the other hand, GalpHFnpµMn
q{FnpµMn

qq » GalpH{Fnq by Claim 3.6.5, and therefore
τ acts trivially by definition of H. Hence τ acts both trivially and by p´1q on the intersection
GalpFnpµMn ,W

1{Mnq XHFnpµMnq{FnpµMnqq, proving

Fn

´

µMn ,W
1{Mn

¯

XHFnpµMnq “ FnpµMnq (3.16)

Therefore

FnpµMn
,W 1{Mnq XH “ FnpµMn

,W 1{Mnq XHFnpµMn
q XH HFnpµMn

q Ě H

“ FnpµMn
q XH by (3.16)

“ Fn Claim 3.6.5

Claim 3.6.7. GalpFnpµMn ,W
1{Mnq{FnpµMnqq » HompW,µMnq.

Proof (Proof of Claim 3.6.7). Kummer theory (cf. e.g. [Mil18, Remark 5.31]) gives us a non-
degenerate pairing

Gal
´

Fn

´

µMn
,W 1{Mn

¯

{Fn pµMn
q

¯

ˆW

N

Ker

ˆ

W ãÑ
Fˆn

pFˆn qMn
Ñ

FnpµMn
qˆ

pFnpµMn
qˆqMn

˙

Ñ µMn

The claim will follow once we show that the kernel above is zero, which is equivalent to proving
that Fn ãÑ FnpµMn

q induces

Fˆn
L

pFˆn q
Mn ãÑ FnpµMn

qˆ
L

pFnpµMn
qˆqMn
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This can be seen using Galois cohomology; bars will denote algebraic closure.

Ker
`

Fˆn
L

pFˆn q
Mn Ñ FnpµMn

qˆ
L

pFnpµMn
qˆqMn

˘

“ Ker
´

H1
`

Fn
L

Fn, µMn

˘

Ñ H1
´

FnpµMn
q
L

FnpµMn
q, µMn

¯¯

from Hilbert 90 [Ser02, II.§1.2]

“ H1 pFnpµMnq{Fn, µMn
q inflation–restriction sequence

In a cyclic extension, 1st and 0th cohomology have the same cardinality, and the latter group is
trivial.

Define the map

ι : pZ{MnZqrGns Ñ µMn
ÿ

gPGn

agg ÞÑ ζa1

Mn

Composing with ψ, we get a map ι˝ψ P HompW,µMn
q. Let ϕ P GalpFnpµMn

,W 1{Mnq{FnpµMn
qq

be the associated Galois automorphism given by Claim 3.6.7; by Kummer theory this means

@w PW : pι ˝ ψqpwq “
ϕpw1{Mnq

w1{Mn
(3.17)

By Claim 3.6.6 we may choose an automorphism δ P GalpHFnpµMn
,W 1{Mnq{Fnq such that

δ|H “ a (under the Artin map of class field theory) and δ|FnpµMn ,W 1{Mn q “ ϕ.

Let λ be a prime of Fn given by Theorem 3.6.4 with σ :“ δ; we now check that it satisfies
the properties above.

(1) and (2) follow directly from construction. (3) comes from λ being unramified.

For (4), we will show that

Du P pZ{MnZqˆ : ι ˝ indλpwq “ upι ˝ ψqpwq. (3.18)

Then replacing g by g´1w and using the Gn-stability of W will prove (4). Since both sides of
(3.18) are in µMn

» Z{MnZ, it is equivalent to proving that the two sides are 1 for the same w’s.

On the left hand side, we have

ι ˝ indλpwq “ ι

˜

ÿ

σPGn

indσλpwqσ

¸

“ indλpwq,

hence the left hand side of (3.18) is 1 iff w is an M th
n power mod λ.

For the right hand side, let λ1 be a prime of FnpµMn ,W
1{Mnq above λ for which Frλ1 “ ϕ.

Then

ι ˝ ψpwq “ 1 ðñ
ϕpw1{Mnq

w1{Mn
“ 1 by (3.17)

ðñ Frλ1 w
1{Mn “ w1{Mn

ðñ w is an M th
n power mod λ1 X FnpµMnq

ðñ w is an M th
n power mod λ

The last equivalence holds because ` splits completely in FnpµMn
q{Fn by (2). This concludes the

proof of (4), and thus the proof of Proposition 3.6.1.
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3.7 Results using Iwasawa theory

So far we have focused on the field Fn “ Qpµpn`1q`. We will now make use of Iwasawa theory:
to do so, we will be looking at an infinite tower of fields, use results from Iwasawa theory to
obtain information about the 8-level of this tower, and then translate this information to the
finite levels.

So consider the tower consisting of the fields Qpµpn`1q for n ě 0. The ascending union of
these is denoted by

Qpµp8q :“
ď

ně0

Qpµpn`1q

Write ∆ :“ GalpQpµpq{Qq » pZ{pZqˆ, Γ :“ GalpQpµp8q{Qpµpqq » Zp and GalpQpµp8q{Qq “
∆ ˆ Γ for the Galois groups. We assume familiarity with the Iwasawa theory of local units (cf.
[Lan90, Chapter 7]), but will recall the relevant results in Propositions 3.7.2 and 3.7.4 below.

Definition 3.7.1. We recall the following notations from the theory of cyclotomic extensions.

1. An :“ ClQpµpn`1q bZ Zp “ p-part of the ideal class group ClQpµpn`1q;
2. Un :“

 

u P Zprζpn`1sˆ
ˇ

ˇu ” 1 mod pζpn`1 ´ 1q
(

“ the local units of Qpµpn`1q congruent to
1 modulo the maximal ideal pζpn`1 ´ 1q;

3. En :“ Zrζpn`1s
ˆ “ the global units of Qpµpn`1q;

4. Cn :“ xζpn`1 , 1´ ζapn`1 | 1 ď a ď pn`1 ´ 1y X En “ the cyclotomic units of Qpµpn`1q;

5. En :“ the closure of En X Un in Un;
6. Cn :“ the closure of Cn X Un in Un;
7. Ωn :“ the maximal abelian p-extension of Qpµpn`1q unramified outside p;
8. Xn :“ GalpΩn{Qpµpn`1qq;
9. For all the above, we will use the index 8 to denote the projective limit taken with respect

to the relative norm maps, e.g. X8 “ lim
ÐÝ

Xn, except for X8 “ lim
ÐÝ

An. (The notation A8
is usually used to denote the injective limit of the groups An.)

10. Λ :“ ZpJT K the Iwasawa algebra.

In the proof of the main conjecture, we will need to relate the finite levels of these modules
to the 8-level. The reason for this is the general observation of Iwasawa theory that the 8-
level—which can be thought of as batching all finite levels together—behaves more nicely than
the finite levels on their own. This can be traced back to having an additional tool on the 8-level
as compared to finite levels, namely the structure theorem of finitely generated Λ-modules.

Proposition 3.7.2. In the category of Λ-modules, we have the following.

(1) eχX8 is finitely generated and torsion for all characters χ;
(2) eχX8 is finitely generated for all characters χ and torsion for χ ‰ 1 even;
(3) eχU8 is free of rank 1—in particular, it is finitely generated—for χ ‰ 1 even;
(4) eχC8 is free of rank 1—in particular, it is finitely generated—for χ ‰ 1 even;
(5) eχU8{eχC8 is torsion for χ ‰ 1 even;
(6) eχE8 is finitely generated for all characters χ.

Proof. We only give references to the proofs.

(1) Lemma 1.3.2
(2) Corollary 1.3.5 and Lemma 1.3.9
(3) [Lan90, Chapter 7, Theorem 2.1]
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Qpµp8q

Qpµpn`1q

Qpµpq

Q

...

...
Γn » Z{pnZ

∆ » pZ{pZqˆ

Γ » Zp

Figure 3.5: The cyclotomic tower Qpµp8q{Q

(4) [Lan90, Chapter 7, Theorem 5.1]
(5) [Lan90, Chapter 7, Theorem 5.2]
(6) Λ “ ZpJT K is noetherian because Zp is [Stacks, Tag 0306]. U8 is finitely generated over the

noetherian ring Λ [Lan86, Chapter 7, Theorem 2.1], hence it is noetherian. Since submodules
of noetherian modules are finitely generated, E8 is finitely generated.

Definition 3.7.3. Let Γn :“ Γp
n

“ GalpQpµp8q{Qpµpn`1qq and γ P Γ be a generator. For any
Λ-module Y define the Γn-invariants resp. -coinvariants Y Γn resp. YΓn by the exact sequence

0 Ñ Y Γn Ñ Y
¨pγp

n
´1q

ÝÝÝÝÝÝÑ Y Ñ YΓn Ñ 0

In particular, ΛΓn “ ZprΓns “ ZprGalpQpµpn`1q{Qpµpqqs.

For Y :“ Y8 P tX8, U8, E8, C8,X8u we obtain natural maps peχY8qΓn Ñ eχYn which
describe the relation between the 8-level and the nth level. The following Proposition 3.7.4
states that the situation is the best possible except for the module E8. As for E8, we will relate
it to the more well-behaved modules in Lemma 3.7.6.

Proposition 3.7.4. In the category of Λ-modules, we have the following.

(1) peχX8qΓn Ñ eχAn is an isomorphism for all characters χ;
(2) peχX8qΓn Ñ eχXn is an isomorphism for χ ‰ 1 even;
(3) peχU8qΓn Ñ eχUn is an isomorphism for χ ‰ 1;
(4) peχC8qΓn Ñ eχCn is an isomorphism for χ ‰ 1 even.

Proof. Again we only give references to the proofs.

(1) Claim 1.2.11 (which can be applied since p ramifies totally in Qpµpq{Q)
(2) Lemma 1.3.9
(3) [Lan90, Chapter 7, Theorem 2.2]
(4) [Lan90, Chapter 7, Theorem 5.1]
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Chapter 3. The Iwasawa main conjecture

Remark 3.7.5. Upon first glance, the diversity of conditions on χ in Propositions 3.7.2 and 3.7.4
may appear confusing. We will, in fact, only need these assertions for χ ‰ 1 even: for χ trivial,
the main conjecture admits a simpler proof, discussed in Section 3.8.1.

Lemma 3.7.6. For all χ ‰ 1 even, there is an ideal A Ď Λ of finite index such that for all
0 ď n:

AKer
´

`

eχE8
˘

Γn
Ñ eχEn

¯

“ 0, ACoker
´

`

eχE8
˘

Γn
Ñ eχEn

¯

“ 0,

and the size of these kernels resp. cokernels is uniformly bounded.

Proof. First consider the following commutative diagram with exact sequences as its rows.

KerπU{E,n

Kerϕn
`

eχU8{eχE8
˘

Γn
peχX8qΓn peχX8qΓn 0

0 eχUn{eχEn eχXn eχAn 0

ϕn

πU{E,n p:q » »

The first row is obtained by applying eχ and p´qΓn to the short exact sequence

0 Ñ U8{E8 Ñ X8 Ñ X8 Ñ 0

which comes from Corollary 1.3.6. The vertical arrows are the natural ones, the ones in the
middle resp. on the right being isos by Proposition 3.7.4.2 resp. Proposition 3.7.4.1.

Claim 3.7.7.
Kerϕn » peχX8q

Γn
M

Im
´

peχX8q
Γn Ñ peχX8q

Γn
¯

Proof. Apply the snake lemma to the following diagram:

`

eχU8{eχE8
˘Γn

peχX8q
Γn peχX8q

Γn

0 eχU8{eχE8 eχX8 eχX8 0

0 eχU8{eχE8 eχX8 eχX8 0

peχU8{eχE8qΓn peχX8qΓn peχX8qΓn

γp
n
´1 γp

n
´1 γp

n
´1

ϕ

Then it follows that

Kerϕn “ Im
`

peχX8q
Γn 99K peχU8{eχE8qΓn

˘

exactness at peχU8{eχE8qΓn

» peχX8q
Γn

L

Ker
`

peχX8q
Γn 99K peχU8{eχE8qΓn

˘

1st isomorphism theorem

“ peχX8q
Γn

L

Im
´

peχX8q
Γn Ñ peχX8q

Γn
¯

exactness at peχX8q
Γn

This proves the claim.
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In particular, Kerϕn is a quotient of peχX8q
Γn . We know that eχX8 is finitely generated

(Proposition 3.7.2.1). Since peχX8qΓn » eχAn (Proposition 3.7.4.1) and the latter is finite, so is
peχX8qΓn . The exact sequence

0 Ñ peχX8q
Γn Ñ eχX8 Ñ eχX8 Ñ peχX8qΓn Ñ 0

gives rise to a pseudo-isomorphism eχX8{ peχX8q
Γn „ eχX8. Thus peχX8q

Γn must be finite
as well, as the contrary would violate the structure theorem of finitely generated Λ-modules
(Theorem 1.1.8). This gives a uniform bound on # Kerϕn as it is a quotient of the maximal
finite Λ-submodule of eχX8, denoted peχX8qfin. In the square p:q, the bottom and right arrows
are monos, thus Kerϕn “ KerπU{E,n, so # KerπU{E,n is also uniformly bounded.

Now consider another commutative diagram.

KerπE,n 0 KerπU{E,n

Ker ρn
`

eχE8
˘

Γn
peχU8qΓn

`

eχU8{eχE8
˘

Γn
0

0 eχEn eχUn eχUn{eχEn 0

CokerπE,n 0

πE,n

ρn

p;q » πU{E,n

The diagram is induced by the short exact sequence

0 Ñ eχE8 Ñ eχU8 Ñ eχU8{eχE8 Ñ 0

and it has exact sequences as its rows. The dashed arrow comes from the snake lemma and it
yields KerπU{E,n » CokerπE,n, hence # CokerπE,n is also uniformly bounded.

By looking at the square p;q, we deduce Ker ρn “ KerπE,n. Again by the snake lemma as in
Claim 3.7.7, we have

Ker ρn “
`

eχU8{eχE8
˘Γn

M

Im
´

peχU8q
Γn Ñ

`

eχE8
˘Γn

¯

The module
`

eχU8{eχE8
˘

Γn
is finite: its size is uniformly bounded by the product

#
`

eχU8{eχE8
˘

¨# KerπU{E,n

Here the first factor is finite by Proposition 3.7.2 and the second is uniformly bounded. Invoking
the structure theorem of finitely generated Λ-modules (Theorem 1.1.8) as before, we deduce
that Ker ρn is a quotient of

`

eχU8{eχE8
˘

fin
and hence # Ker ρn “ # KerπE,n is uniformly

bounded. (In fact, one can show Ker ρn “ 0: this follows from
`

eχU8{eχE8
˘

fin
“ 0. The latter

is a consequence of Lemma 8.7 in [Rub90], which asserts that eχX8 has no nontrivial finite
submodules. The proof uses the Iwasawa main conjecture.)

It also follows that

A :“ AnnΛ

`

peχX8qfin ‘
`

eχU8{eχE8
˘

fin

˘

Ď Λ
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annihilates the kernel and cokernel of πE . It only remains to check that is is of finite index. Both
direct summands above are finite by definition and torsion by Proposition 3.7.2, thus we may
use the following lemma.

Lemma 3.7.8. The annihilator of a finite torsion Λ-module Y is of finite index in Λ “ ZpJT K.

Proof. We claim that for k sufficiently large, pp, T qkY “ 0, thus AnnΛ Y Ď pp, T q
k, which will

prove the lemma.

Let y P Y and f P pp, T q. Since Y is finite, there exist 0 ă i ă j for which f iy ‰ f jy.
Thus p1 ´ f j´iqf iy “ 0, but p1 ´ f j´iq is a unit because f is in the maximal ideal pp, T q.
Therefore f iy “ 0. Doing this for f :“ p and f :“ T , we obtain piy “ T iy “ 0 for some i, thus
pp, T q2i Ď ppi, T iq annihilates y. Since Y is finite we may repeat this for all y and obtain some k
for which pp, T qkY “ 0.

This finishes the proof of Lemma 3.7.6.

Now that we have all this information (Propositions 3.7.2 and 3.7.4 and Lemma 3.7.6), we
can start working towards the Iwasawa main conjecture. These first steps will be done in Lem-
mata 3.7.9 and 3.7.10 and summarised in Corollary 3.7.11. See Remark 3.7.12 for an explanation
of the role these statements play in the proof. Both lemmata are proven by using the structure
theorem and some previously discussed properties of the Iwasawa modules in question.

For each character χ fix a generator hχ of Char
`

eχE8{eχC8
˘

Ď Λ (recall that characteristic
ideals are principal by definition).

Lemma 3.7.9. Let χ ‰ 1 be even and A Ď Λ as in Lemma 3.7.6. Then for all η P A and 0 ď n
there is a ϑn,η : eχEn Ñ ΛΓn for which ϑn,ηpeχCnq “ ηhχΛΓn .

Proof. eχE8 is a nonzero submodule of eχU8 which is free of rank 1 over Λ (Proposition 3.7.2),
therefore eχE8 is torsion free of rank 1. By the structure theorem of finitely generated Λ-
modules (Theorem 1.1.8), we obtain an injective pseudo-isomorphism ϑ : eχE8 Ñ Λ (injectivity
comes from torsion freeness) with finite cokernel. Quotienting out by eχC8, we obtain a pseudo-
isomorphism

eχE8{eχC8 Ñ Λ{eχC8

Therefore

ϑ
`

eχC8
˘

“ Char
`

Λ{ϑ
`

eχC8
˘˘

definition of Char, eχC8 is free of rank 1

“ Char
`

eχE8{eχC8
˘

pseudo-isomorphism preserves Char

“ hχΛ definition of hχ (3.19)

For 0 ă n let

ϑn :“ p´qΓn ˝ ϑ :
`

eχE8
˘

Γn
Ñ ΛΓn

and πE,n :
`

eχE8
˘

Γn
Ñ eχEn be the same as in Lemma 3.7.6. For η P A define

ϑn,η : eχEn Ñ ΛΓn

u ÞÑ ϑnpπ
´1

E,n
pηuqq

This ϑn,η is well-defined: since ηCokerπE,n “ 0, the equation ηu “ πE,npvq can be solved for
each u. The value ϑn,ηpuq does not depend on the choice of v because KerπE,n Ď Kerϑn. This
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is because since ΛΓn has no Zp-torsion, ϑn kills all finite submodules of eχE8, and KerπE,n is
one of these by Lemma 3.7.6.

Now we may conclude the proof:

ϑn,η
`

eχCn
˘

“ ηϑn
`

eχC8
˘

eχCn “ πE,n
`

eχC8
˘

by definition

“ ηhχΛΓn definition of ϑn and (3.19)

Lemma 3.7.10. Suppose eχX8 „
Àk

i“1 Λ{fiΛ where the fi are irreducible (cf. Theorem 1.1.8
and Proposition 3.7.2.1). Then there exists an ideal B Ď Λ of finite index and

@n ą 0 : Dc1, . . . , ck P eχAn : @i “ 1, . . . , k : B AnneχAn{pc1ΛΓn`...`ci´1ΛΓn q
pciq Ď fiΛΓn

Proof. Since eχX8 is torsion (Proposition 3.7.2.1), the pseudo-isomorphism relation is symmet-
ric (Lemma 1.1.10), that is, there is an exact sequence

0 Ñ Y Ñ
k
à

i“1

Λ{fiΛ Ñ eχX8 Ñ Z Ñ 0

where Y and Z are finite. Even better, we have Y “ 0: Y is finite and a direct sum of submodules
of Λ{fiΛ, but since fi is irreducible, the submodules are only the trivial ones, and Λ{fiΛ itself is
infinite (proven in Example 1.1.9), therefore Y must be the direct sum of zero modules.

Tensoring with ΛΓn is right exact, eχX8 becomes eχAn (Proposition 3.7.4.1). Apply the
snake lemma:

ZΓn

0
Àk

i“1 Λ{fiΛ eχX8 Z 0

0
Àk

i“1 Λ{fiΛ eχX8 Z 0

Àk
i“1 ΛΓn{fiΛΓn eχAn ZΓn 0

γp
n
´1 γp

n
´1 γp

n
´1

Thus we have the following exact sequence:

ZΓn Ñ

k
à

i“1

ΛΓn{fiΛΓn Ñ eχAn Ñ ZΓn Ñ 0

Set B :“ AnnΛpZq and ci :“ Im pΛΓn{fiΛΓn Ñ eχAnq. Since Z is finite and torsion, B is of finite
index by Lemma 3.7.8.

Combining Lemmata 3.7.9 and 3.7.10 by setting C :“ AX B, we obtain the following.

Corollary 3.7.11 (First conversion step). Let χ ‰ 1 be even. Then there exists an ideal C Ď Λ
of finite index such that

1. @η P C @n ě 0 Dϑn,η : eχEn Ñ ΛΓn such that ϑn,ηpeχCnq “ ηhχΛΓn ;
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2. @n ą 0 Dc1, . . . , ck P eχAn : C AnneχAn{pc1ΛΓn`...`ci´1ΛΓn q
pciq Ď fiΛΓn .

Remark 3.7.12. The main conjecture concerns the generators hχ resp. fχ “
ś

i fi of the char-
acteristic ideals of eχE8{eχC8 resp. eχX8. What Corollary 3.7.11 does is bringing these two
closer to one another. Lemma 3.7.10 lets the factors fi of fχ be represented by ideal classes ci.
Lemma 3.7.9 will, on the other hand, provide a map ϑn,η. Note that in both cases, the proof
used the structure theorem of finitely generated Λ-modules in an essential way.

So the first conversion step gives us objects on finite levels, thus allowing for more flexible
algebraic machinery to be used. Namely, the second conversion step Proposition 3.6.1 will provide
us with ideals λi representing both ci and a morphism ψ which will arise from ϑn,η. This will
ultimately lead to establishing a connection between fχ and hχ.

Definition 3.7.13. For two sequences of positive numbers panq and pbnq we will write an„Θ bn
and call the two sequences Big Theta-equivalent if an{bn is uniformly bounded (from above and
below). (We deviate from the standard notation an “ Θpbnq here for the sake of convenience.)

Lemma 3.7.14. For every even character χ ‰ 1 we have the following:

(1) For every n ą 0 the quotients ΛΓn{fχΛΓn and ΛΓn{hχΛΓn are finite.
(2) We have

#eχAn„
Θ

#ΛΓn{fχΛΓn , #eχEn{eχCn„
Θ

#ΛΓn{hχΛΓn

Proof. Tensoring the pseudo-isomorphism

eχX8 Ñ
k
à

i“1

Λ{fiΛ

with ΛΓn we obtain a morphism

eχAn » peχX8qΓn Ñ
k
à

i“1

ΛΓn{fiΛΓn

Since the kernel and cokernel of the original pseudo-isomorphism were finite, so are the ones of
the tensored morphism, and their sizes are uniformly bounded. Therefore ΛΓn{fiΛΓn is finite for
all n and i since the direct sum of these form the codomain of a morphism with finite domain,
kernel and cokernel.

Write fχ “
ś

j f
aj
j where aj ě 1 and the fj ’s are distinct. Then the Chinese remainder

theorem states that
ΛΓn{fχΛΓn »

à

j

ΛΓn{f
aj
j ΛΓn

Therefore

# pΛΓn{fχΛΓnq “
ź

j

#
`

ΛΓn{f
aj
j ΛΓn

˘

“
ź

j

p# pΛΓn{fjΛΓnqq
aj ΛΓn has no Zp-torsion

“

k
ź

i“1

# pΛΓn{fiΛΓnq

“ #

˜

k
à

i“1

ΛΓn{fiΛΓn

¸
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In summary, we have

#eχAn “ # peχX8qΓn „Θ
#

˜

k
à

i“1

ΛΓn{fiΛΓn

¸

“ # pΛΓn{fχΛΓnq (3.20)

This proves the first assertions of (1) and (2).

Write hχ “
ś

i1 hi1 for the decomposition of hχ into irreducible factors. Then as above we
have a pseudo-isomorphism

eχE8{eχC8 Ñ
à

i1
Λ{hi1Λ

and we obtain pseudo-isomorphisms with uniformly bounded kernels and cokernels

`

eχE8{eχC8
˘

Γn
Ñ

à

i1
ΛΓn{hi1ΛΓn (3.21)

but here we don’t have isomorphisms as we did for the p-part of the class group, just morphisms

`

eχE8{eχC8
˘

Γn
Ñ eχEn{eχCn (3.22)

with uniformly bounded kernels and cokernels (Lemma 3.7.6). As before, we have that each
ΛΓn{hi1ΛΓn is finite, and

#
`

eχEn{eχCn
˘

„
Θ

#
`

eχE8{eχC8
˘

Γn
„
Θ

#

˜

à

i1
ΛΓn{hi1ΛΓn

¸

“ # pΛΓn{hχΛΓnq (3.23)

proving the second halves of (1) and (2).

Remark 3.7.15. Instead of the Chinese remainder theorem, we could also have used Iwasawa’s
theorem on the growth of Γn-coinvariants (Theorem 1.2.14). That way, the last equalities of
(3.20) and (3.23) would only have been Big Theta-equivalences.

3.8 The end of the proof

Recall that eχX8 „
Àk

i“1 Λ{fiΛ, the characteristic polynomial of eχX8 is fχ “ f1 ¨ ¨ ¨ fk, and hχ
is the characteristic polynomial of eχE8{eχC8. We wish to prove Theorem 3.1.4, which states
that fχΛ “ hχΛ for all even characters χ of ∆.

The proof will use the machinery developed in the previous sections, namely Propositions 3.6.1
and 3.5.13, Corollary 3.7.11, and Lemma 3.7.14. The heart of the proof will be the following:

Lemma 3.8.1. For all even characters χ of ∆, fχ | hχ.

We postpone the proof of Lemma 3.8.1 and use it to prove the main conjecture after making
just one more observation:

Lemma 3.8.2. Let g1, g2 P Λ such that g1 | g2 and

# pΛ{g1ΛqΓn „Θ
# pΛ{g2ΛqΓn

Then g1Λ “ g2Λ.
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Proof. This follows from Theorem 1.2.14.

Proof (Proof of the main conjecture). Let f :“
ś

χ even fχ and h :“
ś

χ even hχ; then the above
Lemma 3.8.1 implies f | h. We now verify the condition of Lemma 3.8.2 for g1 :“ f and g2 :“ h.

# pΛ{fΛqΓn „Θ

ź

χ even

# pΛ{fχΛqΓn

„
Θ

ź

χ even

# peχAnq Lemma 3.7.14.2

“ #A`n orthogonality of idempotents

# pΛ{hΛqΓn „Θ

ź

χ even

# pΛ{hχΛqΓn

„
Θ

ź

χ even

`

eχEn : eχCn
˘

Lemma 3.7.14.2

“

´

E
`

n : C
`

n

¯

orthogonality of idempotents

Here E
`

n resp. C
`

n are as before the closures of E`n XUn resp. C`n XUn in Un. The analytic class
number formula [Lan90, Chapter 3, Theorem 5.1] states the following:

# ClQpµpn`1q` “ pE`n : C`n q (3.24)

Claim 3.8.3. The p-parts of pE`n : C`n q and pE`n X Un : C`n X Unq agree.

Proof. For every x P E`n we have that xNp1´ζpn`1 q´1 is in Un where N denotes the absolute
norm. (Recall that p ramifies totally in Qpµpn`1q{Q with p1´ ζpn`1q being the only prime above
p.) Therefore the index pE`n : E`n X Unq is finite and divides Np1´ζpn`1q´1 “ Φpn`1p1q´1 “ p´1
where Φpn`1 is the cyclotomic polynomial. In particular, we have that pE`n : E`n X Unq is prime
to p. Similarly p - pC`n : C`n X Unq. Write pE`n : C`n X Unq in two ways:

pE`n : E`n X Unq
looooooooomooooooooon

p-

pE`n X Un : C`n X Unq “ pE
`
n : C`n X Unq “ pE

`
n : C`n q pC

`
n : C`n X Unq

looooooooomooooooooon

p-

The assertion follows. (We could also have argued as in the proof of Theorem 1.3.4.)

Leopoldt’s conjecture rkZp E
`

n “ rkZpE
`
n XUnq holds for real cyclotomic fields [Was97, p. 75],

and it implies that pE`n X Unq b Zp “ E
`

n and pC`n X Unq b Zp “ C
`

n .

Using this and Claim 3.8.3 we get that by tensoring by Zp in (3.24) we obtain #A`n “
´

E
`

n : C
`

n

¯

. Therefore Lemma 3.8.2 can be applied, and we get f “ h. Using Lemma 3.8.1 again

we conclude that fχΛ “ hχΛ for all even characters χ.

We now prove Lemma 3.8.1.

3.8.1 Proof of fχ | hχ for χ “ 1

First assume χ “ 1. We will show that both f1 and h1 are units. (The main conjecture for χ “ 1

follows immediately, i.e. without using Lemma 3.8.1, from this.) Recall that ∆ “ GalpQpµpq{Qq.
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Then
e1An “ A∆

n “ Cl
`

Qpµpn`1q∆
˘

bZ Zp
In particular, for n “ 0 we have e1A0 “ pClQq bZ Zp “ 0. Using (the proof of) Lemma 1.3.3 we
conclude e1X8 “ 0, and thus f1 “ 1.

We have e1En “ E
∆

n and e1Cn “ C
∆

n . The analytic class number formula (3.24) is also true
for the field Qpµpn`1q∆. (This is clear from the proof given in [Lan90, Chapter 3, Theorem 5.1].)
Therefore we have

# Cl
`

Qpµpn`1q∆
˘

“
`

E∆
n : C∆

n

˘

Upon tensoring by Zp, the right hand side becomes the p-part of Cl
`

Qpµpn`1q∆
˘

and on the left

hand side we get the index of local units
´

E
∆

n : C
∆

n

¯

. As before, tensoring by Zp is valid here

since the p-adic regulator does not vanish by Leopoldt’s conjecture. The p-part of the class group

is trivial, hence so is E
∆

n {C
∆

n for all n. It follows that the characteristic ideal of E
∆

8{C
∆

8 is Λ,
that is, hχ is a unit.

3.8.2 Proof of fχ | hχ for χ ‰ 1

Now suppose χ ‰ 1. Let n be fixed for now. Let C and c1, . . . , ck be as in Corollary 3.7.11, and
choose ck`1 P eχAn arbitrarily. The reason behind this seemingly odd step is that we will be
doing an inductive process, the ith step of which will give us information about f1 ¨ ¨ ¨ fi´1 (see
(3.29)). Since we are interested in fχ “ f1 ¨ ¨ ¨ fk, the induction will need to go on for k` 1 steps.

Let η P C be such that
for all j, ΛΓj {ηΛΓj is finite (3.25)

Below we will give some possible choices for η, so we need not worry about existence here. It is
now finally time to choose Mn. Choose t P N such that

pt ě #ΛΓn{ηΛΓn and pt ě #ΛΓn{hχΛΓn (3.26)

Such a t exists: the first inequality can be satisfied due to our assumption on η and so can the
second one by Lemma 3.7.14.1. Set Mn :“ #peχAnq ¨ p

n`pk`1qt.

Since eχCn is generated by eχα1 (see Proposition 3.5.4), we may assume that ϑn,η is norm-
alised such that

ϑn,ηpeχα1q “ ηhχ (3.27)

Recall that

ΛΓn “ ZprΓns “ ZprGalpQpµpn`1q{Qpµpqqs, Gn “ GalpQpµpn`1q`{Qq,

and χ is an even character of ∆ “ GalpQpµpq{Qq. It follows that eχZprGns “ eχΛΓn . Thus while
by definition, ord resp. ind map to the group rings ZrGns resp. pZ{MnZqrGns, we may consider
ordλi´1

peχκ`1¨¨¨`i´1
q and indλi´1

peχκ`1¨¨¨`i´1
q as elements of ΛΓn{MnΛΓn . We shall do this from

now on without further comment.

For all i “ 1, . . . , k ` 1 we will construct λi P ci such that for all i “ 1, . . . , k ` 1,

`i :“ pλi X Zq ” 1 mod Mn (3.28)

indλi
`

eχκ`1¨¨¨`i´1

˘

f1 ¨ ¨ ¨ fi´1

ˇ

ˇ eχη
ihχ in eχ pΛΓn{MnΛΓnq (3.29)
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where for i “ 1, the empty products in (3.29) are understood to be 1. The construction of these
λi’s will be done by finite induction using the second conversion step Proposition 3.6.1.

Of the two properties of λi above, it is (3.29) that is actually important to the proof; (3.28) is
just a technical necessity, asserting that it is valid to consider the Kolyvagin derivative κ`1¨¨¨`i´1 .

Before doing the induction, we show that Lemma 3.8.1 already follows from (3.29). Indeed,
consider the equation for i “ k ` 1. We get

indλk`1
peχκ`1¨¨¨`kq f1 ¨ ¨ ¨ fk

looomooon

fχ

ˇ

ˇ

ˇ
eχη

k`1hχ in eχ pΛΓn{MnΛΓnq

It follows that fχ | η
k`1hχ in ΛΓn{MnΛΓn and therefore in ΛΓn{p

nΛΓn . Up until now n was
fixed; now let it run through all of N. We obtain that fχ | η

k`1hχ holds in Λ. All that’s left
to do is to remove the η-factor. To do this, let j P N be large enough so that T j P C and
pj P C—this is possible since C is of finite index in Λ “ ZpJT K—and set η1 :“ T j ´ p2j and
η2 :“ T j ´ p3j . These satisfy the condition (3.25). Moreover they are coprime to each other and
to p1` T qp

m

´ 1 (quotienting out by this polynomial is the same as taking p´qΓn). Since Λ is a
UFD (Corollary 1.1.4), it follows from fχ | η

k`1
1 hχ and fχ | η

k`1
2 hχ that

fχ
ˇ

ˇ

`

ηk`1
1 hχ, η

k`1
2 hχ

˘

“ hχ

holds in Λ, proving Lemma 3.8.1. (Another way to get rid of the η-factor is choosing η :“ pj .
Then the Ferrero–Washington theorem mentioned in Remark 1.2.3 asserts that p - fχ, implying
fχ | hχ.)

Now we return to constructing the λi’s. We will be using Proposition 3.6.1 a total of k`1 times
for Fn :“ Qpµpn`1q`; in each step we need to specify an ideal class c, a finite Gn-submodule W
of Fˆn {pF

ˆ
n q

Mn , and a Galois-equivariant map ψ : W Ñ pZ{MnZqrGns, where Gn “ GalpFn{Qq.
In the ith step we will set c :“ ci; it immediately follows that the λi obtained will belong to ci
and satisfy (3.28). The choices for W and ψ and the verification of (3.29) are more complicated
and will take up the rest of the proof. As we previously have pointed out, hχ already appears in
(3.29) for i “ 1; this will be reflected in the difference between the definitions of ψ for i “ 1 and
i ě 2.

The base case i “ 1

First note that we have a map

ψ̄ : ΛΓn{MnΛΓn

eχ
ÝÑ eχ pΛΓn{MnΛΓnq Ñ pZ{MnZqrGns

Here the second arrow is the natural map arising from the facts that there is an isomorphism
ΛΓn » ZprGalpQpµpn`1q{Qpµpqqs, Mn is a power of p, Gn “ GalpQpµpn`1q`{Qq, and χ is an even
character of ∆ “ GalpQpµpq{Qq.

For i “ 1, let W :“ eχ

´

En{E
Mn

n

¯

and

ψ : W “ eχ

´

En{E
Mn

n

¯

ϑn,η mod Mn
ÝÝÝÝÝÝÝÝÝÑ ΛΓn{MnΛΓn

ψ̄
ÝÑ pZ{MnZqrGns (3.30)

Recall Proposition 3.5.8 with r “ 1: κ1 agrees with D1α1 “ α1 modulo M th
n powers. Therefore

ϑn,ηpeχκ1q “ ϑn,ηpeχα1q “ ηhχ by our assumption (3.27) on η. Thus (3.29) follows from (3.6.1.4):

indλ1peχκ1q

ˇ

ˇ

ˇ
ψpeχκ1q “ eχϑn,η “ eχηhχ
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The cases 2 ď i ď k ` 1

Now let 2 ď i ď k ` 1 and assume that λ1, . . . , λi´1 have already been chosen. Let

W :“ pΛΓn{MnΛΓnq eχκ`1¨¨¨`i´1
Ď Fˆn {pF

ˆ
n q

Mn

Thus W is the modulo Mn reduction of the subgroup of Fˆn generated by Galois conjugates of
eχκ`1¨¨¨`i´1

; in particular, it is indeed a finite Gn-submodule.

With this in mind, define the map ψ : W Ñ pZ{MnZqrGns by ψ :“ ψ̄ ˝ ψ̂ where

ψ̂ : W “ pΛΓn{MnΛΓnq eχκ`1¨¨¨`i´1 Ñ ΛΓn{MnΛΓn

ρeχκ`1¨¨¨`i´1 ÞÑ ρ
η ordλi´1

`

eχκ`1¨¨¨`i´1

˘

fi´1
(3.31)

where ρ P ΛΓn . We need to check that ψ̂ is well-defined, that is, dividing by fi´1 is valid here, and

if ρeχκ`1¨¨¨`i´1
“ wMn is an M th

n power for some w P Fˆn “ pQpµpn`1q`qˆ, then ψ̂pρeχκ`1¨¨¨`i´1
q

is also an M th
n power. After this, all that will remain is verifying (3.29).

First assume that ρeχκ`1¨¨¨`i´1
“ wMn . Recall the statement of Proposition 3.5.13:

ordλi´1

`

eχκ`1¨¨¨`i´1

˘

” ´ indλi´1

`

eχκ`1¨¨¨`i´2

˘

mod MnΛΓn (Proposition 3.5.13)

Apply the induction hypothesis (3.29) to the expression on the right hand side of Proposi-
tion 3.5.13; by our choice (3.26) of t we have η | pt and hχ | p

t, thus we obtain

´ indλi´1

`

eχκ`1¨¨¨`i´2

˘
ˇ

ˇ eχp
it (3.32)

Meanwhile for the left hand side of Proposition 3.5.13, we have

ρ ordλi´1

`

eχκ`1¨¨¨`i´1

˘

” ordλi´1

`

ρeχκ`1¨¨¨`i´1

˘

” 0 mod MnΛΓn (3.33)

since ρeχκ`1¨¨¨`i´1
is an M th

n power by assumption. Putting Proposition 3.5.13, (3.32) and (3.33)
together yields ρpit ” 0 mod MnΛΓn . or equivalently ρ ” 0 mod Mnp

´itΛΓn . Then since Mn “

#peχAnq ¨ p
n`pk`1qt, we obtain

ρeχAn “ 0

Consider the ideal pρeχκ`1¨¨¨`i´1
q “ pwqMn of Fn. It can be decomposed as a product with three

factors.

1. The first consists of the primes above `i´1, which are the Galois conjugates of λi´1, the
contribution of which is, in additive notation,

ordλi´1

`

ρeχκ`1¨¨¨`i´1

˘

λi´1

2. The second factor contains prime ideals above the rational primes `1, . . . , `i´2.
3. The third factor consists of primes p not above any of the `1, . . . , `i´1: in additive notation,

this factor is
ÿ

p

ρ ordp

`

eχκ`1¨¨¨`i´1

˘

p
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Now consider the image of the ideal class of the ideal pρeχκ`1¨¨¨`i´1q in

eχAn{ pprime ideals above `1, . . . , `i´2q

The second factor obviously vanishes, as does the third since every term in it is divisible by ρ,
which kills eχAn. Since pρeχκ`1¨¨¨`i´1

q “ pwqMn and λi´1 P ci´1, it follows that

Mn
´1 ordλi´1

`

ρeχκ`1¨¨¨`i´1

˘

annihilates ci´1. Dividing by Mn is valid here for the following reason. In the above factorisation
of pρeχκ`1¨¨¨`i´1

q “ pwqMn , the second factor is killed in the quotienting, and the third factor has
exponent divisible by Mn by Proposition 3.5.9.1. Since every other exponent is divisible by Mn,
so must ordλi´1

`

ρeχκ`1¨¨¨`i´1

˘

be as well.

From Corollary 3.7.11.2 we get that

fi´1Mn
´1ψ̂pρeχκ`1¨¨¨`i´1

q “ ηMn
´1 ordλi´1

`

ρeχκ`1¨¨¨`i´1

˘

P fi´1ΛΓn (3.34)

It follows that Mn
´1ψ̂pρeχκ`1¨¨¨`i´1

q P ΛΓn , wherefore ψ̂pρeχκ`1¨¨¨`i´1
q P MnΛΓn . This proves

well-definedness of ψ̂ under the assumption ρeχκ`1¨¨¨`i´1
“ wMn .

Now set ρ :“Mn. This in particular implies ρeχκ`1¨¨¨`i´1 “ wMn , therefore (3.34) applies, and

shows that the numerator η ordλi´1
peχκ`1¨¨¨`i´1

q in (3.31) is divisible by fi´1. Dividing by fi´1 is
therefore valid by Weierstrass division (Theorem 1.1.2).

This proves that ψ̂ is well-defined for arbitrary ρ, and consequently so is ψ as well.

Remark 3.8.4. Observe that we used both the first and second conversion step for i “ 1 as well
as for 2 ď i ď k ` 1. For i “ 1, this was very direct; for 2 ď i ď k ` 1, using the first conversion
step is subtly hidden in verifying that our explicit formula for ψ gives a well-defined map.

Now we verify (3.29) for i, i.e. we prove that

indλi
`

eχκ`1¨¨¨`i´1

˘

f1 ¨ ¨ ¨ fi´1

ˇ

ˇ eχη
ihχ in eχ pΛΓn{MnΛΓnq

This is done as follows: working mod MnΛΓn we have

η indλi´1
peχκ`1¨¨¨`iq ” η ordλi´1

`

eχκ`1¨¨¨`i´1

˘

by Proposition 3.5.13

” fi´1ψ
`

eχκ`1¨¨¨`i´1

˘

definition (3.31) of ψ

This together with (3.29) for i´ 1 proves (3.29) for i, thus completes the induction, and finishes
the proof of Lemma 3.8.1.

This completes the proof of the Iwasawa main conjecture.
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Appendix A

The function field analogy

In this chapter we elaborate on how the analogy between number fields and function fields
motivated Iwasawa to develop Iwasawa theory. We will mostly follow [Iwa69a]. The various
objects and statements which correspond to one another under the function field analogy will be
collected in Table A.3.

We will make several statements without proof, and will focus on establishing the analogy on
a heuristic level instead. One should think of the analogy as a way to motivate statements—but
not proofs—in Iwasawa theory. As we have seen in previous chapters, the whole theory can be
built up and also motivated without mentioning function fields. It is worth noting though that
exploring the analogy further can still lead to new results, as demonstrated in the recent papers
[KW10; Sha14], some of whose ideas we discuss in Appendix A.5.

As we shall see, the way this analogy is used is by taking algebro-geometric results about
function fields and formulating analogous assertions about number fields; this will lead us to
cyclotomic fields in a natural way. One could raise the question whether the analogy can be turned
the other way around: is there a theory corresponding to cyclotomic fields in the arithmetic of
function fields? The answer is positive, but won’t be discussed here. We instead refer to the books
[Gos96; Tha04].

Remark A.0.1. In this appendix, number field will mean any algebraic extension of Q, not just
a finite one. This deviates from the standard usage of the term. We will call a finite extension of
Q a finite number field.

A.1 The p-part of the Jacobian

Let k be an algebraically closed field, and consider a complete, nonsingular algebraic curve C of
genus g over k with Jacobian J . Then J is an abelian variety of genus g, and if J` denotes the
`-primary part where ` ‰ char k, then

J`pkq » pQ`{Z`q2g (A.1)

as abelian groups. (For a quick introduction to the theory of Jacobians of curves, see §§5.3.5–5.3.6
of [MP05]. For details, see [Mil08], esp. §I.10 and §III.1.)

55



Appendix A. The function field analogy

Proposition A.1.1. For the endomorphism ring of J`pkq we have End J`pkq » Mat2gˆ2gpZ`q.

Proof. First note that Q`{Z` “ lim
ÝÑ

Q`{Z`r`ns where pQ`{Z`qr`ns is the group of elements killed
by `n, and the maps are the inclusions pQ`{Z`qr`ns ãÑ pQ`{Z`qr`ms for 0 ď n ď m. Then

EndpQ`{Z`q “ Hom pQ`{Z`,Q`{Z`q
“ Hom

`

lim
ÝÑ
pQ`{Z`qr`ns,Q`{Z`

˘

» lim
ÐÝ

Hom ppQ`{Z`qr`ns,Q`{Z`q
» lim
ÐÝ

Z{`nZ “ Z`

Using EndpQ`{Z`q » Z` and

EndppQ`{Z`q ‘ pQ`{Z`qiq »
„

EndpQ`{Z`q HomppQ`{Z`qi,Q`{Z`q
HompQ`{Z`, pQ`{Z`qiq EndppQ`{Z`qiq



inductively, we deduce End J`pkq » EndpQ`{Z`q2g » Mat2gˆ2gpZ`q.

Our first goal is to find an object in the realm of number fields that corresponds to J`pkq and
the endomorphisms of which can be described in a manner similar to Proposition A.1.1. Since
the Jacobian is the degree zero part of the Picard group, and the ideal class group ClF of a finite
number field F is a special case of the Picard group, upon first glance it seems reasonable for
the p-part pClF q bZ Zp of the ideal class group to correspond to J`pkq where p is any rational
prime.

The group pClF q bZ Zp, however, turns out not to be a good analogue of J`pkq. One funda-
mental difference is that the ideal class group of a finite number field is always finite, whereas
Jpkq may be infinite (recall that k is assumed to be algebraically closed), and the same holds for
the primary parts. This suggests that we should be seeking an analogue that is somehow larger.

To discover the origin of this discrepancy, we should reverse the question: why do we have
the description in Proposition A.1.1? The proposition is clearly a direct consequence of J`pkq »
pQ`{Z`q2g. The proof of this isomorphism traces back to k being separably closed; more precisely,
to the fact that the multiplication-by-` map is surjective. (Cf. Remark 7.3 and the discussion
before Proposition 10.5 in [Mil08].) Recall that we have assumed the stronger condition that k
is algebraically closed.

The field of constants k is the analogue of the roots of unity in F . Indeed, in a finite field,
every nonzero element is a root of unity. The field k is an algebraic closure of some finite field,
thus for every element of k there is a finite subfield containing it, and therefore every nonzero
element is a root of unity.

The analogy also manifests in the following form: the constants respectively the roots of unity
are precisely the elements of the respective field which have absolute value 1 for every absolute
value on the field. For number fields, this follows from a theorem of Kronecker [Kro57] (cf. [Gre78]
for an even simpler proof). For function fields, one uses that every absolute value on KC is a
prolongation of an absolute value on kptq. The latter comes either from the degree valuation or
the P pxq-adic valuation where P pxq is a monic irreducible polynomial.

Taking this into account, we set F “ K0pµp8q where K0 is a finite Galois extension of Q.
Thus we have a Zp-extension F {K0; we write K8 “ F , and Kn for the intermediate extensions.
Since Jppkq is the injective limit of the pn-torsion points Jpkqrpns, we seek its analogy in a similar

56



§A.1. The p-part of the Jacobian

Function fields Number fields

k (large enough) field of constants (sufficiently many) roots of 1 in F “ K8

KC function field of C, finite extension of kptq F “ K8 number field

J Jacobian of C lim
ÝÑ

ClEi ideal class group

` ‰ char k rational prime p any rational prime

J`pkq “ lim
ÝÑ

Jpkqr`ns `-primary points A8 “ lim
ÝÑ

An “ plimÝÑClEiq bZ Zp

Jpkqr`ns “ tj P Jpkq | j`
n

“ 0u An “ pClEiq bZ Zp

J`pkq » pQ`{Z`q2g
A8 „ pQp{Zpqλ ‘ Cpµ1, . . . , µsq
pNA8 » pQp{Zpqλ

End J`pkq » Mat2gˆ2gpZ`q EndppNA8q » MatλˆλpZpq

Table A.2: The analogy between function fields and number fields

form. Let, as usual, An denote the p-part of the ideal class group of Kn, and let A8 “ lim
ÝÑ

An
where we take the injective limit with respect to the natural maps induced by the inclusions in
the tower of fields. The following theorem is the analogue of (A.1). See Table A.2 for a summary
of which objects correspond to one another.

Theorem A.1.2. There is an exact sequence

0 Ñ pfinite p-groupq Ñ pQp{Zpqλ ‘ Cpµ1, . . . , µsq Ñ A8 Ñ pfinite p-groupq Ñ 0

where Cpµ1, . . . , µsq “
Às

i“1 p
À

N Z{pµiZq, λ is the λ-invariant of the extension, and µ “ µ1 `

. . . ` µs is the µ-invariant (q.v. Definition 1.1.14). In particular, pQp{Zpqλ ‘ Cpµ1, . . . , µsq is
pseudo-isomorphic to A8.

The proof will be given in the next section. Here we draw some conclusions to demonstrate
the analogy between Jppkq and A8.

Corollary A.1.3. For large enough N , we have pNA8 » pQp{Zpqλ.

Proof. Choose N ě maxpµ1, . . . , µsq so that pN is at least the order of the kernel and cokernel
groups.

Remark A.1.4. Recall that µ “ 0 when K0{Q is abelian by the Ferrero–Washington theorem,
and it is conjectured that this is also true for arbitrary K0; q.v. Remark 1.2.3.

Corollary A.1.3 is the analogue of (A.1). Then just as for the Jacobian, we obtain:

Corollary A.1.5. End pNA8 » MatλˆλpZpq.

Note that the factor pN simply means that we disregard the bottom N fields of the tower,
i.e. KN plays the role of K0. This is the same step as in the proof of Iwasawa’s theorem (The-
orem 1.2.1).

Comparing Corollary A.1.3 with (A.1), one might say that λ{2 is the analogue of the genus of
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the function field KC. (Since λ is an invariant of the Zp-extension K8{K0, the pN factor makes
no difference.) One might also try to relate this to the notion of the genus for a finite extension of
Q (cf. [Neu99, p. III.3.5]). We only point out that the two are of fundamentally different nature:
λ{2 is a half-integer, whereas the genus of a finite number field is in general not even rational.

Finally, we note that for certain purposes it is better to consider the minus part A´8, i.e. the
part where complex conjugation acts by p´1q, to be the object analogous to J`pkq. This will be
illustrated in Appendix A.3 where we will sketch the motivating analogy of the main conjecture.

A.2 Proof of the pseudo-isomorphism for A8

In this section we give a proof of Theorem A.1.2. It will go as follows. Since X8 “ lim
ÐÝ

An is
a finitely generated torsion Λ-module (Lemma 1.3.2), we already have a similar result for that,
namely

0 Ñ pfiniteq Ñ
s
à

i“1

Λ{pµiΛ‘
t
à

j“1

Λ{fjpT q
mjΛ Ñ X8 Ñ pfiniteq Ñ 0 (A.2)

where µ “ µ1 ` . . .` µs, λ “
řt
j“1mj deg fj are the Iwasawa invariants. So what we need to do

is relate the injective limit A8 “ lim
ÝÑ

An to the projective limit X8. We may do this by applying
the following theorem of Iwasawa [Iwa73, Theorem 11].

Theorem A.2.1. There is a pseudo-isomorphism HomZppA8,Qp{Zpq „ X8.

Given the contravariance of HomZpp´,Qp{Zpq, this statement is hardly surprising. We omit
the proof; it uses Iwasawa’s theory of adjoints (cf. [Iwa73, §1.3] for a summary, [Was97, §15.5]
for details) and the standard techniques used in Section 1.2.

For finitely generated torsion Λ-modules, pseudo-isomorphism is an equivalence relation (Co-
rollary 1.1.11), so we obtain an exact sequence for HomZppA8,Qp{Zpq:

0 Ñ pfiniteq Ñ
s
à

i“1

Λ{pµiΛ‘
t
à

j“1

Λ{fjpT q
mjΛ Ñ HomZppA8,Qp{Zpq Ñ pfiniteq Ñ 0 (A.3)

In the category of Zp-modules, Qp{Zp is an injective object. Indeed, since Zp is a PID,
injectivity is equivalent to divisibility [Wei94, Corollary 2.3.2], and it is easily checked that
Qp{Zp is divisible. Thus applying HomZpp´,Qp{Zpq preserves the exactness of (A.3). We now
verify that this yields Theorem A.1.2 by computing each term in the exact sequence in a series
of claims.

Claim A.2.2 (2nd and 5th terms). If M is a finite Zp-module then HomZppM,Qp{Zpq is also
finite and of p-power order.

Proof. Let f P HomZppM,Qp{Zpq and m PM . Since M is finite, nm “ 0 for some n P N. Since
N Ă Zp, we also have 0 “ fp0q “ fpnmq “ nfpmq. Do this for all the finitely many m’s, and let k
be the product of the corresponding n’s. Then k kills the image of f . Since this is true for every
morphism f , it follows that there is a finite Zp-submodule N of Qp{Zp such that Im f Ď N , that
is, HomZppM,Qp{Zpq “ HomZppM,Nq. The latter is finite since both M and N are finite.

Furthermore, since N is finite, there is a k P N such that pkN “ 0. Therefore pk kills
HomZppM,Nq “ HomZppM,Qp{Zpq, hence it has order dividing pk.
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§A.3. Towards the Iwasawa main conjecture

Claim A.2.3. HomZppΛ{p
n,Qp{Zpq »

À8

i“1 Z{pnZ

Proof. First observe that Λ{pn “ ZpJT K{pn » pZ{pnZqJT K. Therefore any homomorphism
f P HomZppΛ{p

n,Qp{Zpq is determined by its values on 1, T , T 2, . . . (Remember that we are
considering pZ{pnZqJT K as a Zp-module, and forget about the ring structure of pZ{pnZqJT K, so
there is no correspondence between the values fpT iq for different i’s.) Since pn P Zp, we have
0 “ fp0q “ fppnT iq “ pnfpT iq. We obtain the desired isomorphism.

Claim A.2.4. For fpT q P Λ a distinguished and irreducible polynomial:

HomZppΛ{fpT q
m,Qp{Zpq » pQp{Zpqm deg f

Proof. A morphism f P HomZppΛ{fpT q
m,Qp{Zpq is again determined by its values on T i, i P N.

We may choose these values freely for 0 ď i ă m deg fpT q, the rest is determined by these and
the relation fpT qm “ 0. This yields the desired isomorphism.

Claim A.2.5 (3rd term).

HomZp

˜˜

s
à

i“1

Λ{pµiΛ

¸

‘

˜

t
à

j“1

Λ{fjpT q
mjΛ

¸

,Qp{Zp

¸

»

»

˜

s
à

i“1

à

N
Z{pµiZ

¸

‘ pQp{Zpq
řt
j“1 mi deg fi “ Cpµ1, . . . , µsq ‘ pQp{Zpqλ

Proof. Finite direct sums commute with the Hom functor, thus we may use Claims A.2.3
and A.2.4.

Claim A.2.6 (4th term). HomZp
`

HomZp pA8,Qp{Zpq ,Qp{Zp
˘

» A8

Proof. Since every element in A8 is of p-power order, the group HomZp pA8,Qp{Zpq is iso-
morphic to the Pontryagin dual Homcts pA8,Tq of A8 where Homctsp´,´q is the group of con-
tinuous group homomorphisms and T denotes the circle group. The holds for the bidual, meaning
that we have

HomZp
`

HomZp pA8,Qp{Zpq ,Qp{Zp
˘

» Homcts pHomcts pA8,Tq ,Tq

The group on the right is canonically isomorphic to A8 by the Pontryagin duality theorem.

Putting Claims A.2.2, A.2.5 and A.2.6 together, we see that applying HomZpp´,Qp{Zpq to
(A.3) yields Theorem A.1.2.

A.3 Towards the Iwasawa main conjecture

In this section we show how the Iwasawa main conjecture fits into the function field analogy.

Let τ be an algebraic correspondence on C, that is, a divisor on C ˆ C. (Cf. [Smi05, §§3.1–
3.3] for a quick introduction to correspondences, or [Ful98, Chapter 16] for a more complete
account.) Then τ induces an endomorphism of the Jacobian J , which restricts to the `-primary
part J`. Proposition A.1.1 states that this restriction can be represented by a matrix Mpτq P
Mat2gˆ2gpZ`q.
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In particular, let k0 be a finite subfield of k such that C is also defined over k0. Then there
is a Frobenius automorphism ϕ P Galpk{k0q. Then the rationality part of the Weil conjectures
states that

ZpC{k0, xq “
detp1´ ϕx | H1pC{k0

,Q`qq
detp1´ ϕx | H0pC{k0

,Q`qq
(A.4)

Here the left hand side is the zeta function of the curve C considered as a curve over the finite field
k0, and the numerator resp. denominator on the left hand side are the characteristic polynomials
of the Frobenius ϕ on the `-adic cohomology groups. Simply put, (A.4) relates the zeta function
to the eigenvalues of the Frobenius.

What is a similar result for number fields? Let σ be an automorphism of K8; then as be-
fore, this induces an endomorphism of pNA8, which can be represented by a matrix Mpσq P
MatλˆλpZpq.

The simplest case is the case of cyclotomic fields, i.e. when K8 “ Qpµp8q, Kn “ Qpµpn`1q.
We will use the notations of Section 3.7. The different formulations of the main conjecture then
relate the characteristic polynomial of an Iwasawa module to some incarnation of the p-adic L-
function (Section 3.1). Since characteristic polynomials in the sense of Definition 1.1.12 describe
the action of a topological generator on an Iwasawa module, this shows the analogy with (A.4).

The result pNA8 » pQp{Zpqλ can be viewed as a statement about orthogonality. In the
cyclotomic tower, we have another sort of orthogonality, namely the one given by the orthogonal
idempotents of Zpr∆s (cf. [Was97, §6.3]). More explicitly, the characters of ∆ are ωi for 0 ď
i ď p ´ 2 where ω denotes the Teichmüller character. To ease notation, we will write ei for the
idempotent eωi . One might ask whether these two orthogonalities are related. The answer is
positive, as demonstrated in [Iwa64, §1.3] and summarised in [Iwa69a] by Iwasawa.

We briefly sketch this relation. If we assume Vandiver’s conjecture, that is, the vanishing of
eiA0 for all even i, then we have that eiX8 » Λ{Gω1´ipT qΛ for all 3 ď i ď p ´ 2 odd. For a
proof, consult [Was97, Theorem 10.16]; note that the proof is relatively elementary, that is, it
uses little more than Iwasawa’s construction of p-adic L-functions. This result should be seen as
the first instance of the main conjecture; it is clear that Iwasawa considered it to be so. (See also
Section 3.2 for a different perspective.)

Using p-adic Weierstrass preparation (Theorem 1.1.3), we may write

Gω1´ipT q “ pµiuipT qmipT q

where µpiq ě 0 is an integer, uipT q P Λˆ, and mipT q P ZpJT K is a monic polynomial of degree
λpiq. We have

Λ
L

Gω1´ipT qΛ “ ZpJT K
L

ppµpiquipT qmipT qq » pZ{pµpiqZq JT K
L

mipT q

It follows that
řp´2
i“0 λpiq “ λ and

řp´2
i“0 µpiq “ µ.

Let γ be a topological generator of Γ. This is represented by the λ ˆ λ matrix Mpγq. By
orthogonality, its action on the ωi-component is represented by a λpiq ˆ λpiq matrix Mipγq.
Moreover since the topological generator γ of Γ corresponds to 1`T , the characteristic polynomial
of Mipγq is mipT ´ 1q. Let

GpT q :“
p´2
ź

i“0

Gω1´ipT q, upT q :“
p´2
ź

i“0

uipT q, mpT q :“
p´2
ź

i“0

mipT q
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§A.4. The Weil pairing

Then we have GpT q “ pµupT qmpT q, and mpT ´ 1q is the characteristic polynomial of Mpγq.
This is a more explicit description of how the p-adic L-function is related to the action of the
topological generator.

By assuming Vandiver’s conjecture above, we were essentially working with A´8 instead of
A8, which shows that for these purposes, the former is the better analogue of J`pkq.

A.4 The Weil pairing

For an abelian variety A and an algebraically closed field k, one has a non-degenerate Weil pairing
ApkqpmqˆA_pkqpmq Ñ µmpkq where m is an integer not divisible by the characteristic of k, and
A_ denotes the dual abelian variety [Mil08, §I.13]. Since Jacobians are autodual, in our setting
we have Jr`ns ˆ Jr`ns Ñ µ`n for all n, which yield

T`pJq ˆ T`pJq Ñ µ`8 (A.5)

Given the analogies discussed above, it is natural to raise the question whether there is an
analogous pairing for Zp-extensions.

As indicated at the end of the previous section, we will be considering A´8 as the analogue of
J`pkq. Remembering that one of the T`pJq’s in (A.5) appear in the role of a dual, in the analogous
statement we will should replace one of them by X`8. Instead of X`8, however, the statement
features the larger module X`8, i.e. the plus part of the Galois group of the maximal p-ramified
abelian p-extension. Namely, we have a non-degenerate pairing

A´8 ˆ X`8 Ñ µp8 (A.6)

This is called the Iwasawa pairing, first proven by Iwasawa [Iwa64]. The pairing is constructed
from a Kummer pairing [Was97, §13.5]. For elliptic curves, one may think of the Weil pairing as
an instance of Kummer theory, which validates the analogy further (see [Sil09, Chapter VIII, §1]
for a thorough exposition or [Sil12] for a heuristic explanation, both by Silverman). Washington
makes the point that when it comes to Kummer theory, X8 allows for a ‘more natural theory’
than X8.

Remark A.4.1. There also exists a version of the Iwasawa pairing for χ-components, see [NSW15,
Theorem 11.4.3] or [Was97, Proposition 13.32].

A.5 Generalised Jacobians

In this section we will illustrate that the analogy presented above is still relevant in contemporary
research as motivation. To this end, we will give a survey of the reciprocity conjecture of Khare
and Wintenberger [KW10], which was strengthened and proved by Sharifi [Sha14]. For details
and a proof, we refer to these papers.

As before, let C be a complete nonsingular curve over k. Let P1, P2 P Cpkq be two distinct
k-rational points. There is an exact sequence

0 Ñ Gm Ñ JP1P2 Ñ J Ñ 0 (A.7)
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Figure A.1: The number fields involved in Appendix A.5.

where Gm is the multiplicative group and JP1P2
denotes the generalised Jacobian [Ser88, §V.17].

In other words, JP1P2 is an extension of the Jacobian J by the multiplicative group Gm. Consider
the class of (A.7) in Ext1

pJ,Gmq. This can be identified with the degree zero divisor class
rP1 ´ P2s P Jpkq [Ser88, Theorem VII.16.6].

Taking Tate modules for a prime ` ‰ p, we have that T`pJP1P2q is also an extension:

0 Ñ Z`p1q Ñ T`pJP1,P2q Ñ T`pJq Ñ 0 (A.8)

Here Z`p1q “ lim
ÐÝ

µ`n . We have right exactness because all connecting maps between Gmr`ns “
µ`n are surjective. This extension class in Ext1

Z`JGkKpT`J,Z`p1qq is then identified with the image
of rP1 ´ P2s in the `-primary part Jpkqr`8s. This identification takes place in the cohomology
group H1pGk, T`pJqq; we end up in this group by using Weil duality [KW10, §5.3].

We seek an analogy of this statement for number fields. We begin with definitions; see Fig-
ure A.1. Let K be a CM-field containing µp with maximal totally real subfield K`. Consider the
cyclotomic Zp-extensions of K resp. K`; these will be denoted by K8 resp. K`8. Let M resp.
M8 be the maximal pro-p abelian p-ramified extension of F` resp. F`8 . Let q1 and q2 be distinct
primes of F` not above p which are inert in F`8 , and Frq1 ,Frq2 P GalpM{F`q be the Frobenius
elements of q1 resp. q2.

We now construct an analogue MQ of the `-part of the degree zero divisor class rP1 ´ P2s.
There is a short exact sequence

0 Ñ GalpM8{K
`
8q Ñ GalpM8{K

`q
deg
ÝÝÑ Zp Ñ 0

where we call the map to Zp the degree map. Let M 1
Q :“ xFrq1 ,Frq2yZp be the Zp-submodule

of GalpM8{K
`
8q generated by the Frobenius elements, and MQ its maximal Zp-submodule that

vanishes under the degree map. Since the Frobenius elements Frq1
, Frq2

represent the primes q1,
q2, and these in turn correspond to the points P1, P2 under the analogy, this shows that MQ is
indeed analogous to the class rP1 ´ P2s.

Now for the object corresponding to the extension class. Let A8,q1q2 denote the p-part of the
ray class group of K8 of conductor q1q2. Using the assumptions on the primes q1, q2 we have an
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exact sequence
0 Ñ µp8 Ñ A´8,q1q2

Ñ A´8 Ñ 0 (A.9)

This can be considered analogous to (A.8): both generalised Jacobians and ray class groups
control ramification. We define NQ to be the subgroup of Ext1

ZpJΓKpA
´
8, µp8q generated by the

class of (A.9).

It follows from definition that Ext1
ZpJΓKpA

´
8, µp8q agrees with the Γ-coinvariants of the module

HompA´8, µp8q. The Iwasawa pairing—which, as discussed in Appendix A.4, is analogous to
the Weil pairing—identifies HompA´8, µp8q with GalpM8{K

`
8q, the Γ-coinvariants of which is

GalpM{K`8q. This shows Ext1
ZpJΓKpA

´
8, µp8q » GalpM{K`8q. The latter is also isomorphic to

H1pΓ,GalpM8{F
`
8qq via evaluation at a generator; this is in analogy with H1pGk, T`pJqq above.

This allows us to relate MQ to NQ. Khare and Wintenberger conjectured these subgroups
to be equal, in analogy with the function field case. One might notice that while the original
statement is about elements, the conjecture of Khare and Wintenberger is about groups generated
by corresponding elements. Sharifi later made and proved a slightly stronger version of the
conjecture about generators of these groups. We decided to restrict ourselves to presenting this
weaker form since most of the ways the analogy works can already be observed in this case
without going into too much detail.
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A.6 The analogy in tabular form

Function fields Number fields

k (large enough) field of constants (sufficiently many) roots of 1 in F “ K8

C complete nonsingular curve over k —

g genus of C λ{2 (?)

kptq Q

KC function field of C, finite extension of kptq F “ K8 number field

J Jacobian of C lim
ÝÑ

ClEi ideal class group

` ‰ char k rational prime p any rational prime

J`pkq “ lim
ÝÑ

Jpkqrpns `-primary points A8 “ lim
ÝÑ

An “ plimÝÑClEiq bZ Zp or A´8

Jpkqr`ns “ tj P Jpkq | j`
n

“ 0u An “ pClEiq bZ Zp

—
Cpµ1, . . . , µsq “

Às
i“1 p

À

N Z{pµiZq
µ “ µ1 ` . . .` µs

J`pkq » pQ`{Z`q2g
A8 „ pQp{Zpqλ ‘ Cpµ1, . . . , µsq
pNA8 » pQp{Zpqλ

End Jppkq » Mat2gˆ2gpZpq EndppNA8q » MatλˆλpZpq

TlpJq Tate module X8 “ TlpF q Tate module

— X8 „ HompA8,Qp{Zpq

τ algebraic correspondence on C σ P AutpF q

Mpτq matrix of the induced
element in End Jp

Mpσq matrix of the induced
element in End pNA8

k0 finite subfield of k K0 finite number field

ϕ P Galpk{k0q Frobenius γ P Γ topological generator

characteristic polynomial of ϕ
characteristic polynomial

in the sense of Definition 1.1.12

ZpC{k0
, xq zeta function p-adic L-function

T`pJq ˆ T`pJq Ñ µ`8 Weil pairing A´8 ˆ X`8 Ñ µp8 Iwasawa pairing

P1, P2 k-rational points q1, q2 inert primes not over p

JP1P2 generalised Jacobian ray class group
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