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These notes were written in preparation for my Oberseminar talk, providing an overview of
§§7.1–7.3 of Rubin’s book [Rub00], with a few remarks towards the rest of Chapter 7. I claim
responsibility for all errors, mistakes and typos. All references point to Rubin. The numbering
of theorems (but not of displayed equations) follows that of the book, and these numbers are
provided for reference whenever appropriate.

1 Goals, strategy, and assumptions

Standing assumptions. K/Q number field, Φ/Qp finite extension with ring of integers O and
residue field k = O/p. We have Γ := Gal(K∞/K) ≃ Zdp and Λ := OJΓK. The field F will always
satisfy K ⊆f F ⊂ K∞. We fix a p-adic representation T of GK∞ , V := T ⊗O Φ, W := V/T =
T ⊗O D, and WM := M−1T/T ⊆ W for 0 ̸= M ∈ O. Finally, let c be an Euler system for
(T,K∞).

Goals. We wish to prove the following three theorems on Euler systems, as stated in Talk 3:

Theorem 2.3.2. Let c be an Euler system such that Hyp(K∞, V ) holds. If cK,∞ = (cF )F ∈
H1

∞(K,T ) is not torsion, then X∞ is a torsion Λ-module (i.e. weak Leopoldt holds for T ).

Theorem 2.3.3. Let c be an Euler system such that Hyp(K∞, T ) and Hyp(K∞/K) hold. Then
char(X∞) | indΛ(c).

Theorem 2.3.4. Let c be an Euler system such that Hyp(K∞, V ) and Hyp(K∞/K) hold. Then
char(X∞) | pt indΛ(c) for some t ≥ 0.

The index of divisibility occurring in the last two statement measures divisibility of cK,∞ by
looking at its homomorphic images in Λ. Formally speaking, this means [Rub00, Definition 2.2.1]:

indΛ(c) :=
{
φ(cK,∞) : φ(cK,∞) ∈ HomΛ(H

1
∞(K,T ),Λ)

}
⊆ Λ

We recall what the hypotheses mean, see [Rub00, p. 41]. The hypothesis Hyp(K∞, V ) asserts
the existence of an automorphism τ ∈ GK∞ acting trivially on µp∞ , (O×

K)1/p
∞

andK(1) such that
dimΦ(V/(τ − 1)V ) = 1 and V is irreducible as a Φ[GK∞ ]-module. The hypothesis Hyp(K∞, T )
is stronger: it’s defined analogously, but we mandate T/(τ − 1)T to be O-free and T ⊗ k to be
irreducible over k[GK∞ ].

The hypothesis Hyp(K∞/K) is only meaningful when d = 1 and when GK∞ V either
trivially or by the cyclotomic character: in this case, it requires that
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• either K is totally real and Leopoldt’s conjecture holds for K,

• or K is imaginary quadratic.

For the rest of this talk, we assume Hyp(K∞, V ), as this is required for all three theorems
above. Furthermore, we assume that cK,∞ is not a torsion element: this is explicitly assumed in
Theorem 2.3.2, and follows from Hyp(K∞/K) for the other two. We also fix an automorphism
τ as in Hyp(K∞, V ).

Strategy. A very rough outline: we will first assume Theorem 2.3.2 along with two black-boxed
statements, and use these to prove the two theorems on characteristic ideals. Then we will sketch
a proof of Theorem 2.3.2. The two black boxes will remain unproven: their proof takes up the
second half of Chapter 7.

There will be similarities between the proofs in this talk and that of the bound on the Selmer
group seen in Talk 9 (Theorem 2.2.2). We will also enlist the help of derivative classes, again
focusing on the class for r = 1, and at the end we will let M be a sufficiently large power of
p. However, there is a key algebraic difference between the two setups: in that proof, we always
worked over the field K, whereas here we need to work over extensions K ⊆f F ⊂ K∞, which will
also mean that instead of O-modules, we have to deal with O[Gal(F/K)]-modules – this makes
things more difficult.

2 Selmer sequences and Kolyvagin sequences

In this section, we make preparations for proving Theorems 2.3.3 and 2.3.4. We begin with some
basic observations.

Definition 7.1.2. Let (−)div denote the maximal divisible submodule of a module, and let Z
resp. Z∗ be the maximal GK∞ -stable submodule of (τ − 1)W resp. (τ − 1)W ∗. Define aτ :=[
W τ=1 :

(
W τ=1

)
div

]
·max{#Z,#Z∗}.

Lemma 7.1.3. The quantity aτ is finite. If Hyp(K∞, T ) holds, then we even have aτ = 1.

Remark. The proofs of Theorems 2.3.3 and 2.3.4 will be very similar. The difference between
them is precisely the second assertion of Lemma 7.1.3: it will allow us to remove the p-factors.

Proof. Finiteness of aτ is routine. We check that both factors are finite. For the first factor, recall
that by definition, we have W ∗ = HomO(T,D(1)), and thus corankZp(W ) = rankZp(W

∗) =
rankZp HomO(T,D(1)) is finite, because T has finite O-rank; since the Zp-coranks are finite,
the index must also be finite. As for the second factor, consider Zdiv ⊆ Z ⊆ (τ − 1)W : since
this is a divisible GK∞ -submodule, it corresponds to a GK∞-stable subspace V0 ⊆ (τ − 1)V .
By Hyp(K∞, V ) we have (τ − 1)V ⊊ V , but Hyp(K∞, V ) also asserts irreducibility of V , hence
V0 = 0, and consequently Zdiv = 0 and Z is finite. The same argument works for Z∗. Hence
aτ <∞.

We show aτ = 1, checking that both factors are 1. As for the first one, it is true in general
that W τ=1/(W τ=1)div and (T/(τ − 1)T )tors have the same length over O (see A.2.5, the proof is
via Herbrand quotients; we have already used this in Talk 9); here Hyp(K∞, T ) shows that the
latter is 1. Turning to the second factor, and writing p ⊂ O for the maximal ideal, the assumption
Hyp(K∞, T ) implies that have thatWp is an irreducible GK∞-module. SinceWM/(τ−1)WM is a
free O/MO-module of rank 1 by Hyp(K∞, V ), the module Wp cannot be contained in (τ −1)W .
It follows from the definition that Z = 0, and similarly Z∗ = 0.
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Definition 7.1.1. Recall that V ∗ := HomO(V,Φ(1)). Since τ µp∞ trivially, we have

dimΦ(V
∗/(τ − 1)V ∗) = dimΦ(V/(τ − 1)V ) = 1

by using Hyp(K∞, V ). Recalling that W ∗ = V ∗/T ∗, we may thus fix an isomorphism

ϑ∗ :W ∗/(τ − 1)W ∗ ∼−→ D := Φ/O.

Recall that Ω := K(1)K(µp∞ , (O×
K)1/p

∞
)K(W ) where K(1) is the maximal p-extension of K

inside its Hilbert class field, and K(W ) is the smallest extension of K such that GK(W ) W is
trivial. Set Ω∞ := ΩK∞. We define an evaluation map

Ev∗ : G
Ω

⟨τ⟩
∞
→ Hom

(
SΣp

(K∞,W
∗),D

)
=: X∞

σ 7→
(
c 7→ ϑ∗(c(σ))

)
Using Hyp(K∞, V ), it is easily seen that Ev∗ is well-defined, and the cocycle condition for c
shows it to be a homomorphism.

For the rest of this section, we assume the validity of Theorem 2.3.2, so thatX∞ is a torsion Λ-
module. Then X∞ has characteristic ideal charX∞ =

∏r
i=1 fiΛ where the factors fi are uniquely

determined up to Λ× by the condition fi+1 | fi via the elementary divisor theorem.

Proposition 7.1.7. There exist elements z1, . . . , zr ∈ X∞ and ideals g1, . . . , gr ⊆ Λ such that for
all 1 ≤ k ≤ r:

(1) zk ∈ Ev∗(τGΩ∞);

(2) aτgk ⊆ fkΛ, and g1 ⊆ g2 ⊆ . . . ⊆ gr;

(3) there is a split exact sequence

0→
k−1∑
i=1

Λzi →
k∑
i=1

Λzi → Λ/gk → 0;

(4) aτ ·X∞
/∑r

i=1 Λzi is a pseudo-null Λ-module.

Remark. Without the first condition, this is easy: let gk := fkΛ. The difficulty is to have zk in
the image of the evaluation map.

From now on, fix a sequence (zk)k as above; this is necessary because it need not be unique.
Let

Z∞ :=

r∑
i=1

Λzi ⊆ X∞

WriteM⊆ Λ for the unique maximal ideal.

Definition 7.1.8. A Selmer sequence of length 0 ≤ k ≤ r is a tuple σσσ = (σi)i ∈ (τGΩ∞)k such
that Ev∗(σi)− zi ∈MZ∞ for all 1 ≤ i ≤ k.

Remark. Selmer sequences exist by Proposition 7.1.7: for instance, let σk be any preimage of zk
under Ev∗, and then Ev∗(σk)− zk = 0 ∈MZ∞. Of course, this is not that impressive.
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We now introduce Kolyvagin sequences, which are associated with interesting Selmer se-
quences.

From now on, M ∈ pN0 will always denote a power of p. Let

ΩM := K(1)K(WM )K(µM , (O×
K)1/M ).

The field F will always satisfy K ⊆f F ⊂ K∞, and we write LF,M for the fixed field of⋂
c∈SΣp(F,W∗

M
)

ker((c)FΩM
) ⊆ GFΩM

.

One checks that LF,M/FΩM is finite abelian, and that LF,M/K is finite Galois.

Definition. A Kolyvagin sequence for F and M is a k-tuple πππ = (qi)i of primes of K with
0 ≤ k ≤ r such that there is a Selmer sequence σσσ of length k such that for all 1 ≤ i ≤ k, we have
qi ∤ N and Frqi

∈ GK is conjugate to σi ∈ τGΩ∞ in LF,M . If k = 0, the sole Kolyvagin sequence
is the empty sequence.

We introduce some notation associated with Kolyvagin sequences. Let

r(πππ) :=

k∏
i=1

qi

be the product of the ideals in the sequence; we have seen in Talk 7 that r(πππ) ∈ RF,M , cf.
Lemma 4.1.3. Write

Π(k, F,M) := {Kolyvagin sequences of length k for F and M}.

Let Ψ(k, F,M) ⊆ ΛF,M be the ideal generated by all homomorphic images of modules generated
by derivative classes associated with r(πππ) for all πππ:

Ψ(k, F,M) :=
∑

πππ∈Π(k,F,M)

∑
ψ∈Hom(⟨κ[F,r(πππ),M]⟩,ΛF,M )

ψ
(
κ[F,r(πππ),M ]

)
⊆ ΛF,M

Proposition 7.1.9. There is an h ∈ Λ satisfying the following two conditions:

(1) h is coprime to char(X∞) =
∏r
i=1 fiΛ;

(2) for every intermediate extension K ⊆f F ⊂ K∞, there NF ∈ pN0 such that for all M ∈ pN0

and all 0 ≤ k ≤ r:

a5τhΨ(k, F,MNF )ΛF,M ⊆ fk+1Ψ(k + 1, F,M).

Remark. The second condition may look technical. As we will witness momentarily, it should be
seen as a tool enabling one to do finite induction on the factors fi of the characteristic ideal.

The proofs of Propositions 7.1.7 and 7.1.9 are difficult and will be omitted. We still wish to
say a few words on a zeroth step towards proving them, as this is also relevant to the proofs
of Theorems 2.3.3 and 2.3.4 (but not for Theorem 2.3.2). The point is that one can make the
following finiteness assumptions:

(7.1.4) ΛF / char(X∞)ΛF and X∞ ⊗ ΛF are finite for all F ,
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(7.1.5) for all primes λ ⊂ OF dividing the ideal of definition N , there exists γλ in the decompo-

sition group Gλ ⊂ GK such that T γ
pn

λ =1 = (T ∗)γ
pn

λ =1 = 0 for all n ≥ 0.

These assumptions will be used for making sure that the modules

ΛF /f1ΛF , SΣp(K∞,W
∗)GF , WGF , (W ∗)GF , WGFλ , (W ∗)GFλ

are all finite. But why can we make these assumptions? This is where the results on twisting
discussed in Talk 10 come into play: if we twist T by a character ρ, then X∞ resp. c are replaced
by X∞⊗ρ resp. cρ. We have seen in Theorem 6.4.1 that the validity of our theorems for (T, c) and
(T ⊗ρ, cρ) are equivalent. So it suffices to find a character ρ such that the finiteness assumptions
above hold – this is indeed doable by Lemma 6.1.3, which we haven’t actually seen, but the proof
is relatively elementary and has nothing to do with Euler systems.

Remark. Proposition 7.1.7 admits an easy proof in a certain interesting special case, see the
beginning of §7.6. This uses Lemma 7.2.4.iii below.

3 Proof of Theorems 2.3.3 and 2.3.4

We still assume the validity of Theorem 2.3.2, so that X∞ is a torsion Λ-module. Recall that
KΣ denotes the maximal Σ-ramified extension of K. For K ⊆f F ⊂ K∞, let ΛF := O[Gal(F/K)]
and ΛF,M := ΛF /MΛF ≃ (O/MO)[Gal(F/K)].

Corollary 7.1.10. Let K ⊆f F ⊂ K∞ and let h be as in Proposition 7.1.9. Let Σ be a finite set
of places of K containing all p-adic and infinite places as well as places where T ramifies. Then
for all ψ ∈ HomΛ

(
H1(KΣ/F, T ),ΛF

)
:

a5τh
rψ(cF ) ∈ char(X∞)ΛF

Remark. The statement makes sense. While a priori, cF is an element in H1(F, T ), we may in
fact view it as a class in H1(KΣ/F, T ). This is because for sets Σ as in the statement, there is
an equality

lim←−
F

H1(F, T ) = lim←−
F

H1(KΣ/F, T ),

see Corollary B.3.6 (general properties of inverse limits and continuous cohomology).

Proof of Corollary 7.1.10. The image of cF under the following natural map is the derivative class
associated with [F,1,M ]:

H1(F, T )→ H1(F,WM )

cF 7→ κ[F,1,M ] (1)

This is Lemma 4.4.13(i); we haven’t quite seen this statement in Talk 7, but it’s not deep: it
follows directly by unravelling the definition of κ[F,1,M ] and using the corestriction property of
Euler systems.

This allows us to describe the image of cF under the following induced composition:

H1(KΣ/F, T )
/
MNr

F ↪→ H1(KΣ/F,WMNr
F
) ↪→ H1(F,WMNr

F
)

cF 7−−−−−−−−−−−−−−−−−−−→ κ[F,1,MNr
F ] (2)
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Since both maps here are injective, they are invertible on the submodule of H1(F,WMNr
F
) gen-

erated by κ[F,1,M ], and there is a map

ψ : ΛF,Mκ[F,1,M ] ↪→ H1(KΣ/F, T )
/
MNr

F
ψ−→ ΛF,MNr

F

modM−−−−→→ ΛF,M

By definition of Ψ, this yields

ψ
(
κ[F,1,MNr

F ]

)
∈ Ψ(0, F,MNr

F ). (3)

We apply Proposition 7.1.9 inductively on 0 ≤ k < r:

a5rτ h
rΨ(0, F,MNr

F )ΛF,M ⊆ a5(r−1)
τ hr−1f1Ψ(1, F,MNr−1

F )ΛF,M ⊆ . . . ⊆

⊆

(
r∏
i=1

fi

)
Ψ(r, F,M)ΛF,M ⊆

(
r∏
i=1

fi

)
ΛF,M = char(X∞)ΛF,M

This together with (3) shows

a5rτ h
rψ
(
κ[F,1,MNr

F ]

)
∈ char(X∞)ΛF,M

Since ψ
(
κ[F,1,MNr

F ]

)
is the mod M reduction of ψ(cF ) by (2), the assertion follows by taking

M →∞.

Theorem 7.1.12. char(X∞) | a5rτ indΛ(c).

Corollary 7.1.10 provides divisibilities between the characteristic ideal and multiples of ho-
momorphic images of the Euler system at all levels. It should not be surprising that we lose the
h-factor, because Proposition 7.1.9 tells us that this is coprime to char(X∞). To move from the
homomorphic images a5τh

rψ(cF ) to a5τh
rcF , we will require the following algebraic result, the

proof of which we omit (nothing surprising happens in it). Theorem 7.1.12 will then follow by
going up the tower.

Lemma 7.1.11. Let G be a finite abelian group, R a PID, B a finitely generated R[G]-module
without R-torsion, and f ∈ R[G] an element that is not a zero divisor. Now if b ∈ B satisfies

{ψ(b) : ψ ∈ HomR[G](B,R[G])} ⊆ fR[G],

then b ∈ fB. In words: if all homomorphic images of b in R[G] are multiples of f , then b itself
is a multiple of f .

Proof of Theorem 7.1.12. Let K ⊆f F ⊂ K∞ be fixed. We apply Lemma 7.1.11 with R := Zp,
G := Gal(F/K), f :=

∏r
i=1 fi the characteristic polynomial,B := H1(KΣ/F, T )/H

1(KΣ/F, T )tors,
and b := a5rτ h

rcF . Note that Lemma is applicable: G is a quotient of Zdp and thus abelian, B is
finitely generated over Zp because H1(KΣ/F, T ) is, which in turn follows from class field theory,
and finally the condition on homomorphic images of b is precisely Corollary 7.1.10. We obtain

a5rτ h
rcF ∈ char(X∞) ·H1(KΣ/F, T )

/
H1(KΣ/F, T )tors (4)

We claim that there is a containment

lim←−
F

H1(F, T )tors ⊆ H1
∞(K,T )tors =

(
lim←−
F

H1(F, T )

)
tors

(5)
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To justify this, recall from Lemma 1.2.2(ii) that there is an exact sequence V GF → WGF →
H1(F, T )tors → 0; this is a general property of p-adic representations of GF . If x ∈ Λ killsWGK∞ ,
then it surely kills WGF too, and the exact sequence shows that it also kills H1(F, T )tors, and
(5) follows.

Using (5), we can take the inverse limit of (4) along K ⊆f F ⊂ K∞:

a5rτ h
rcK,∞ ∈ char(X∞) ·H1

∞(K,T )
/
H1

∞(K,T )tors

Thus for all homomorphisms φ ∈ HomΛ(H
1
∞(K,T ),Λ), we have

a5rτ h
rφ(cK,∞) ∈ char(X∞)Λ.

Since h is coprime to char(X∞) by Proposition 7.1.9, we even have the following:

a5rτ φ(cK,∞) ∈ char(X∞)Λ.

The desired divisibility follows by the definition of indΛ(c).

Theorems 2.3.3 and 2.3.4 quickly follow from Theorem 7.1.12.

Proof of Theorem 2.3.4. We want to show that char(X∞) | pt indΛ(c) holds for some t ≥ 0.
Theorem 7.1.12 tells us that char(X∞) | a5rτ indΛ(c). Writing a5rτ = ptm with p ∤ m ∈ Z≥0, we
have m ∈ Λ×, and the theorem follows.

Proof of Theorem 2.3.3. The proof is the same, but now taking into account the second half of
Lemma 7.1.3, we have that Hyp(K∞, T ) implies t = 0.

4 A plethora of evaluation maps

As we move on to working towards the proof of Theorem 2.3.2, our treatment also becomes more
sketchy, as there is no way this will fit into 90 minutes.

Definition 7.2.1. Let qτ (x) := det(1− τ−1x | T ∗)/(x− 1) ∈ O[x]. (We have already encountered
this polynomial in Talk 8.)

Claim. This induces an isomorphism of 1-dimensional Φ-vector spaces

qτ (τ
−1) : V/(τ − 1)V

∼−→ V τ=1.

Proof. This is A.2.4. The first space has dimension 1 by Hyp(K∞, V ). View V as a Φ[x]-module
with x-action by τ−1: then there is a decomposition

V ≃
⊕
j

Φ[x]/gj(x)
ejΦ[x]

with gj(x) ∈ Φ[x] irreducible, gj(0) = 1 for all j, and
∏
j gj(x)

ej = (1−x)qτ (x). By irreducibility,
there is exactly one j such that gj(x) = 1− x.

Recall the fixed isomorphism ϑ∗ :W ∗/(τ − 1)W ∗ ∼−→ D.
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Definition. The inverse of the D(1)-dual O(1) ∼−→ T τ=1 of ϑ∗ defines an isomorphism

ϑ : (W τ=1)div
∼−→ D,

using that we have fixed a generator ξ ∈ lim←−n µpn (see Talk 7, §4.4). We fix an extension

ϑ :W τ=1 → D;

this is not canonical, but the difference between any two choices is killed by any homomorphism in
the group Hom(W τ=1/(W τ=1)div,D) and thus by the index

[
W τ=1 :

(
W τ=1

)
div

]
, and therefore

also by aτ . Finally, define a composition

ϑ :W/(τ − 1)W
qτ (τ

−1)−−−−−→ (W τ=1)div
ϑ−→ D;

this is a composite of two surjective maps, and thus itself surjective. Note that ϑ is canonical.

Recall that we have defined an evaluation map Ev∗ : G
Ω

⟨τ⟩
∞
→ Hom(SΣp(K∞,W

∗),D) = X∞

by setting Ev∗(σ)(c) = ϑ∗(c(σ)).

Definition 7.2.2. We define the dual evaluation map:

Ev : G
Ω

⟨τ⟩
∞
→ Hom(H1(K∞,W ),D)

σ 7→ (c 7→ ϑ(c(σ))),

The two evaluation maps admit finite level modulo M versions defined by the same formulæ:

Ev∗F,M : G
FΩ

⟨τ⟩
M

→ Hom(SΣp
(F,W ∗

M ),O/MO)

EvF,M : G
FΩ

⟨τ⟩
M

→ Hom(H1(F,WM ),O/MO)

Definition 7.2.3. Let −• : Λ→ Λ denote the homomorphism induced by the involution Γ→ Γ,
γ 7→ γ−1.

The following property of −• is easily checked:

Claim. If B is a Λ-module and A ⊆ Λ an ideal such that A ⊆ AnnΛB, then A• ⊆ AnnΛ(Hom(B,D)).

Lemma 7.2.4. We have the following annihilator relations involving Galois cohomology over
Ω∞/K∞ and evaluation maps:

(i) Let c ∈ H1(K∞,W ) such that for all γ ∈ GΩ∞ , Ev(γ)(c) = 0. Then

aτ AnnΛ(H
1(Ω∞)/K∞,W )c = 0.

(ii) aτ AnnΛ(H
1(Ω∞)/K∞,W )• Hom(H1(K∞,W ),D) ⊆ OEv(GΩ∞).

(iii) aτ AnnΛ(H
1(Ω∞)/K∞,W )•X∞ ⊆ OEv∗(GΩ∞).

Remark. We will only need (i) and (iii) in the sequel. Note that aτ is present in all three state-
ments: it becomes clear how it arises when one looks at the proof.
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Proof. The evaluation map Ev induces a dual map H1(K∞,W ) → Hom(G
Ω

⟨τ⟩
∞
,D). The main

part of the proof is investigating this map. Staring at the definition of Ev long enough, we find
that it is given by the composition

H1(K∞,W )
resK∞

Ω∞−−−−→ H1(Ω∞,W )GK∞ → Hom(Ω∞,W/(τ − 1)W )
ϑ−→ Hom(Ω∞,D) (6)

We describe the kernels of these maps. Observe that the first map has kernel H1(Ω∞/K∞/W )
by inflation–restriction. The second map has kernel Hom(Ω∞,W )GK∞ ∩ Hom(Ω∞, (τ − 1)W ).

The third map is induced by ϑ, and thus has kernel W qτ (τ
−1)=0/(τ − 1)W , which can be shown

to have the same order as W τ=1/(W τ=1)div (this is again the Herbrand quotient computation
from A.2.5). Since the image of GK∞ under a homomorphism in the kernel of the second map is
a GK∞ -stable submodule of (τ − 1)W , it follows from the definition of aτ that aτ kills the kernel
of the composition of the last two maps.

To see (i), note that the condition Ev(γ)(c) = 0 means that c maps to 0 under (6). The claim
follows from the description of the kernels.

For (ii), dualise the evaluation map Ev : GΩ∞ ⊗ O → Hom(H1(K∞,W ),D) by applying
HomO(−,D). The statement follows from the description of the kernels plus the Claim above.

Finally, (iii) can be proven analogously, but now we put asterisks everywhere and replace the
last map ϑ in (6) by the injective map ϑ∗.

Recall the following two sets of ideals of K. The set R consists of square-free products of
primes, coprime to N (the ideal of definition of c), and RF,M ⊂ R is the indexing set for the
derivative classes κ[F,r,M ].

Definition 7.2.5. Let K ⊆f F ⊂ K∞ and M ∈ pN0 . Define

RF,M,τ := {r ∈ R : ∀q | r,Frq is conjugate to τ in Gal(FΩM/K)}.

In Talk 7 (Lemma 4.1.3), we have seen that RF,M,τ ⊂ RF,M .
We define three more evaluation maps – and there are even more to come later!

Definition. We define finite evaluation maps. Let q ∈ RF,M,τ be a prime and fix Q | q a prime
above it in the algebraic closure such that Frq = τ on FΩM , which is doable by Definition 7.2.5.
(Note: Frq ∈ GFΩ

⟨τ⟩
M

.) Then the maps are:

Ev∗q,f := Ev∗F,M (Frq) : SΣp
(F,W ∗

M )→ O/MO,
Evq,f := EvF,M (Frq) : H

1(F,WM )→ O/MO.

Definition. We define singular evaluation maps. Recall that we have fixed a generator σq of
Gal(K(q)/K(1)) in Talk 7 (Definition 4.4.1). Fix a lift of σq to the inertia group IQ, by abuse
of notation also denoted by σq. (Note: σq ∈ GFΩ

⟨τ⟩
M

.) Define the map as the composition

Evq,s : H
1(F,WM )→ H1(FQ,WM ) ↠ H1

s (FQ,WM )
∼−−−−→

1.4.7.i
W

Frq=1
M =W τ=1

M
ϑ−→ O/MO.

Another way of saying this is that Evq,s(c) = ϑ(c(σq)) for c ∈ H1(F,WM ).

The following general algebraic statement will allow us to create even more evaluation maps
from our already extensive arsenal:

Lemma 7.2.7. Let K ⊆f F ⊂ K∞, M ∈ pN0 , and let B be a ΛF = O[Gal(F/K)]-module. Then
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(i) There is an O-module isomorphism

−̃ : HomO(B,O/MO)→ HomΛ(B,ΛF,M )

ψ 7→

ψ̃ : b 7→
∑

ρ∈Gal(F/K)

ψ(ρb)ρ−1


(ii) We have ρ̃ψ = ρ−1ψ̃ for all ψ ∈ HomO(B,O/MO) and ρ ∈ Gal(F/K). In particular, −̃ is

not an isomorphism of ΛF,M -modules.

Proof. The inverse map is
∑
ρ∈Gal(F/K) αρρ 7→ α1.

The following is essentially a restatement of Theorem 4.5.4 about finite–singular comparison
map, which states (κ[F,rq,M ])

s
q = φfsq (κ[F,r,M ]) for rq ∈ RF,M .

Theorem 7.2.10. If r ∈ RF,M and q ∈ RF,M,τ is a prime with q ∤ r, then

Ẽvq,f (κ[F,r,M ]) = Ẽvq,s(κ[F,rq,M ]).

We can also state the following global (Poitou–Tate) duality theorem in terms of evaluation

maps: the images of locsΣ,Σ0
(SΣ(K,WM )) and locfΣ,Σ0

(SΣ0
(K,W ∗

M )) are orthogonal complements
(Theorem 1.7.3.ii). The maps here are localisations to the sum of singular resp.finite local coho-
mology groups over Σ− Σ0.

Theorem 7.2.11. For rq ∈ RF,M with q ∈ RF,M,τ a prime, let Σpr resp. Σprq denote the primes
of K dividing pr resp. prq. Then

aτ︸︷︷︸
∈N

Ẽvq,s
(
SΣprq(F,WM )

)︸ ︷︷ ︸
∈ΛF,M

Ev∗q,f |SΣpr (F,W
∗
M )︸ ︷︷ ︸

∈Hom(SΣpr (F,W
∗
M ),O/M)

= 0

Corollary 7.2.12. Let K ⊆f F ⊂ K∞, let M ∈ pN0 , r ∈ RF,M , and γ ∈ τGΩ∞ . Then

aτ ẼvF,M (γ)(κ[F,r,M ]) Ev
∗
F,M (γ)|SΣpr (F,W

∗
M ) = 0.

Proof. This follows from Theorem 7.2.10 (finite–singular comparison) and Theorem 7.2.11 (aka
Poitou–Tate duality).

Remark. We will only use this statement with r = 1 in the proof of Theorem 2.3.2. The statement
for general r is needed for proving Proposition 7.1.9, which we shan’t do.

5 Proof of Theorem 2.3.2

Having everything from the previous section at our disposal, the idea of the proof is simple: we
will use Corollary 7.2.12 to construct a nonzero annihilator of X∞.

Lemma 7.3.2. X∞ is a finitely generated Λ-module.

Sketch of proof. The proof is a Nakayama style argument: it’s sufficient to show that X∞ modulo
the augmentation ideal ker(OJΓK ↠ O) is finitely generated over O. Then the proof boils down
to studying finiteness properties of (Pontryagin duals of) Selmer groups and using restrictions
maps.
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Lemma 7.3.3. Suppose that X∞ is not torsion over Λ. Let

J := {γ ∈ τGΩ∞ : Ev∗(γ) /∈ (X∞)tors} ;

Then the subgroup ⟨J⟩ ≤ GK generated by J contains an open subgroup of GΩ∞ .

Proof. We first show that J is non-empty (for the empty set, the generated subgroup would be
the trivial group, which isn’t open because GK isn’t discrete). By a general statement, we have
that H1(Ω∞/K∞,W

∗) is torsion over Λ. This supposedly follows from Corollary C.2.2, although
it’s not clear to me how. Recall from Lemma 7.2.4.iii that

aτ AnnΛ
(
H1(Ω∞/K∞,W

∗)
)•
X∞ ⊆ OEv∗(GΩ∞).

This shows that there is a γ0 ∈ GΩ∞ such that Ev∗(γ0) /∈ (X∞)tors: indeed,

 

otherwise we
would have

aτ AnnΛ
(
H1(Ω∞/K∞,W

∗)
)•
X∞ ⊆ (X∞)tors,

which contradicts the assumption of X∞ not being torsion.  Since Ev∗(τγ0) = Ev∗(τ) Ev∗(γ0),
it follows that at least one of τγ0 and τ is contained in J ; in particular, J ̸= ∅.

By definition, J = (Ev∗)−1(X∞ − (X∞)tors) ∩ τGΩ∞ . As X∞ is finitely generated over Λ
by Lemma 7.3.2, we have that (X∞)tors ⊆ X∞ is closed, so X∞ − (X∞)tors is open, thus its
preimage under Ev∗ is also open in GΩ∞ . So J is the intersection of two open sets, thus itself an
open set.

Sketch of the proof of Theorem 2.3.2. As it’s probably clear from Lemma 7.3.3, we will argue by
contradiction:

 

assuming that X∞ is not Λ-torsion, we will show that cK,∞ ∈ H1
∞(K,T )tors.

Using Lemma 7.3.3, let γ ∈ J .
Let K ⊆f F ⊂ K∞ and let M be a power of p. Then Corollary 7.2.12 shows

aτ ẼvF,M (γ)(κ[F,1,M ]) Ev
∗
F,M (γ) = 0 (7)

We want to go up the tower along F . We show that the elements ẼvF,M (γ)(κ[F,1,M ]) form a
projective system. To this end, first note that for F ⊆f F

′ ⊂ K∞, we have

(κ[F,1,M ])F ′ =
(
corFF ′ κ[F ′,1,M ]

)
F ′ =

∑
ρ∈Gal(F ′/F )

ρκ[F ′,1,M ]

Since ẼvF,M (γ) factors through its restriction to K∞, this together with the definition of ẼvF,M
shows that

ΛF ′,M
resF

′
F−−−→ ΛF,M

ẼvF ′,M (γ)(κ[F ′,1,M ]) 7−−−→ ẼvF ′,M (γ)(κ[F,1,M ])

Therefore the projective limit lim←−F,M ẼvF,M (γ)(κ[F,1,M ]) ∈ Λ exists, and (7) becomes

aτ

(
lim←−
F,M

ẼvF,M (γ)(κ[F,1,M ])

)
Ev∗(γ) = 0.

Our choice of γ makes sure that Ev∗(γ) /∈ (X∞)tors, which forces

lim←−
F,M

ẼvF,M (γ)(κ[F,1,M ]) = 0. (8)
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We go back to finite level, extending the result to GΩ∞ as follows. The conclusion (8) holds

for all γ ∈ J and thus for all γ ∈ ⟨J⟩. Once again looking at the definition of ẼvF,M , and taking
into account the facts that ⟨J⟩ has finite index in GΩ∞ (because it’s an open subgroup) and that
Λ is torsion-free, we deduce that

EvF,M (γ)(κ[F,1,M ]) = 0

for all γ ∈ GΩ∞ , or equivalently

Ev(γ)((κ[F,1,M ])K∞) = 0 (9)

where (κ[F,1,M ])K∞ ∈ H1(K∞,W ).
Using Lemma 7.2.4.i, this (9) implies

aτ AnnΛ(H
1(Ω∞/K∞,W ))(κ[F,1,M ])K∞ = 0.

To get a contradiction, we want to turn this into a nonzero annihilator of cK,∞. To this end, we
use the map (1) to go from the derivative class κ[F,1,M ] to cF , and change the annihilator in a
way so that it can be seen to be nonzero and independent of F : the latter will mean that it also
annihilates cK,∞, delivering our desired contradiction. For the details, we refer to Rubin.
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