RTG 2553: Symmetries and classifying spaces: Analytic, arithmetic and derived

UNIVERSITÄT DUISBURG ESSEN

Open-Minded

An equivariant *p*-adic Artin conjecture

Dr. Bence Forrás

Doctoral Researcher (10/2020-09/2023), Funding: RTG Master: Rheinische Friedrich-Wilhelms-Universität Bonn

1. Advisor: Prof. Dr. Nickel, 2. Advisor: Prof. Dr. Bertolini.

Essen Seminar for Algebraic Geometry and Arithmetic

Motivation

Notation

Theorem (Greenberg 1983). Let $\chi : \mathcal{G} \to \mathbb{C}_p$ be a character with open kernel. There exists a fraction $G_{\chi,S}(T) \in \text{Quot}(\mathcal{O}_{\mathbb{Q}_p(\chi)}[[T]])$ of power series such that

 $L_{\rho,S}(1-s,\chi) = G_{\chi,S}(u^s-1)/(\text{explicit polynomial})$

where $\mathcal{O}_{\mathbb{Q}_p(\chi)}[\Gamma] \simeq \mathcal{O}_{\mathbb{Q}_p(\chi)}[[T]]$, $\gamma \mapsto 1 + T$, and u is the image of γ under the infinite part of the *p*-adic cyclotomic character.

Theorem (*p*-adic Artin conjecture, Wiles 1990). $G_{\chi,S}(T) \in \mathbb{Z}_p[[T]] \otimes_{\mathbb{Z}_p} \mathbb{Q}_p^c$.

Theorem (refined *p*-adic Artin conjecture, Ritter–Weiss 2004). $G_{\chi,S}(T) \in \mathcal{O}_{\mathbb{Q}_p(\chi)}[[T]]$.

Ritter–Weiss defined an equivariant element $\Phi_{S} \in \mathfrak{z}(\mathcal{Q}(\mathcal{G}))^{\times}$ which specialises to the respective characacterwise *p*-adic Artin *L*-functions.

Goal. Introduce an *equivariant* version of the refined *p*-adic Artin conjecture, and prove it for certain classes of extensions.

Due to the trivial character, denominators are present in the definition of Φ_S . These are made more amenable by introducing a *non-empty smoothing set T*.

Nichifor–Palvannan [1] studied the question without smoothing, working away from the trivial character, in the case when $\mathcal{G} \simeq H \times \Gamma$ is a direct product cut out by an \mathbb{F}_p^{\times} -valued character.

• *p* denotes an odd rational prime

- L/K is a finite CM field extension such that $\zeta_p \in L$
- L^+ is the maximal totally real subfield of L

• K_{∞}/K is the cyclotomic \mathbb{Z}_{p} -extension, $L_{\infty}^{+} := K_{\infty}L^{+}$

• $\mathcal{G} := \operatorname{Gal}(L^+_{\infty}/K) \simeq H \rtimes \Gamma, \gamma \in \Gamma$ topological generator • Γ_0 nontrivial subgroup of Γ with central image in \mathcal{G} • $\Lambda(\mathcal{G}) := \mathbb{Z}_p[\![\mathcal{G}]\!], \ \mathcal{Q}(\mathcal{G}) := \operatorname{Quot}(\Lambda(\mathcal{G}))$ • $\mathfrak{Z}(-)$ is the centre of a ring • *S*, *T* are finite disjoint sets of places of *K* satisfying $S \supseteq S_{ram}(L_{\infty}/K)$ and a technical condition on T • $\mathbb{Q}_{\rho}(\chi) := \mathbb{Q}_{\rho}(\chi(g) : g \in \mathcal{G})$ for a character χ of \mathcal{G} • $\mathbb{Q}_{p,\chi} := \mathbb{Q}_p(\chi(h) : h \in H)$ for a character χ of \mathcal{G}

Main Result

Consider the following equivariant p-adic Artin L-function attached to L^+_{∞}/K :

 $\Phi_{\mathcal{S}}^{\mathcal{T}} := \Phi_{\mathcal{S}} \cdot \prod \operatorname{nr} \left(\mathbf{1} - \varphi_{W_{\infty}} \right)$

where $w_{\infty} \mid v$ is a fixed place of L_{∞}^+ , nr means reduced norm, $\varphi_{w_{\infty}}$ is the Frobenius.

Conjecture (equivariant *p*-adic Artin conjecture). Let \mathfrak{M} be a $\Lambda(\Gamma_0)$ -order in $\mathcal{Q}(\mathcal{G})$ containing $\Lambda(\mathcal{G})$. Then the smoothed equivariant p-adic Artin L-function $\Phi_{\mathcal{S}}^{\mathcal{T}}$ is in the image of the composite map

 $\mathfrak{M} \cap \mathcal{Q}(\mathcal{G})^{\times} \to K_1(\mathcal{Q}(\mathcal{G})) \xrightarrow{\mathsf{nr}} \mathfrak{z}(\mathcal{Q}(\mathcal{G}))^{\times}$

where the first arrow is the natural map $x \mapsto [(x)]$.

Theorem 1. Suppose that for all irreducible characters χ with open kernel and all irreducible constituents $\eta \mid \operatorname{res}_{H}^{\mathcal{G}} \chi$, the extension $\mathbb{Q}_{p}(\eta)/\mathbb{Q}_{p,\chi}$ is totally ramified. Assume the equivariant Iwasawa main conjecture. Then the equivariant *p*-adic Artin conjecture holds for all maximal $\Lambda(\Gamma_0)$ -orders in $\mathcal{Q}(\mathcal{G})$.

The total ramification condition above is satisfied, for instance, in the following cases:

• if $\mathcal{G} \simeq H \times \Gamma$ is a direct product;

• if \mathcal{G} is a pro-*p* group;

Sketch of proof

A major part of the proof of Theorem 1 is determining the *Wedderburn decomposi*tion of $\mathcal{Q}(\mathcal{G})$:

 $\mathcal{Q}(\mathcal{G}) \simeq \prod M_{n_{\chi}}(D_{\chi})$

• χ runs through equivalence classes of irreducible characters of \mathcal{G} with open kernel • $\chi \sim \chi' \iff \exists \sigma \in \operatorname{Gal}(\mathbb{Q}_{\rho,\chi}/\mathbb{Q}_{\rho}) : \operatorname{res}_{H}^{\mathcal{G}}\chi = \sigma(\operatorname{res}_{H}^{\mathcal{G}}\chi')$

• D_{χ} is a skew field, which is *a priori* poorly understood

In contrast to this, the decomposition of the group ring $\mathbb{Q}_{p}[H]$ is well understood:

 $\mathbb{Q}_{p}[H] \simeq \prod M_{n_{\eta}}(D_{\eta})$ $\eta \in \operatorname{Irr}(H)/\sim$

• η runs through equivalence classes of irreducible characters of H

• $\eta \sim \eta' \iff \exists \sigma \in \operatorname{Gal}(\mathbb{Q}_p(\eta)/\mathbb{Q}_p) : \eta = \sigma(\eta')$

• D_{η} is a skew field with centre $\mathbb{Q}_{\rho}(\eta)$, determined by its Hasse invariant

• D_n has a unique maximal \mathbb{Z}_p -order \mathcal{O}_{D_n}

Fix χ , and let $\eta \mid \operatorname{res}_{H}^{\mathcal{G}} \chi$ be an irreducible constituent. The extension $\mathbb{Q}_{p}(\eta)/\mathbb{Q}_{p,\chi}$ is cyclic, and there is a unique generator τ that acts as a power of γ on η .

Theorem 3. If $\mathbb{Q}_{p}(\eta)/\mathbb{Q}_{p,\chi}$ is totally ramified, then $D_{\chi} \simeq \text{Quot}\left(\mathcal{O}_{D_{n}}[[X; \tau, \tau - \text{id}]]\right)$.

• if for all prime divisors $q \mid #H$, we have $p \nmid q - 1$.

Using a result of Johnston–Nickel [2], we have a stronger and unconditional statement in the following special case:

Theorem 2. If p does not divide the order of the commutator subgroup of \mathcal{G} , then $\Phi_{S}^{T} \in \mathfrak{z}(\Lambda(\mathcal{G}))$, and the equivariant *p*-adic Artin conjecture holds for $\mathfrak{M} = \Lambda(\mathcal{G})$.

The skew power series ring $\mathcal{O}_{D_n}[[X; \tau, \tau - id]]$ • has underlying additive group $\mathcal{O}_{D_n}[[X]]$ • has multiplication rule $dX = \tau(d)X + (\tau - id)(d)$ for $d \in \mathcal{O}_{D_n}$ • possesses a Weierstrass theory due to work of Venjakob [3] This allows us to modify the proof of Nichifor–Palvannan to work in this more general setting.

Deutsche

Forschungsgemeinschaft

German Research Foundation

References

- [1] Nichifor, A. & Palvannan, B. On free resolutions of Iwasawa modules. *Documenta Mathematica*, 24, pp. 609–662 (2019)
- Johnston, H. & Nickel, A. An unconditional proof of the abelian equivariant Iwasawa main conjecture and applications. (arXiv:2010.03186, 2020) [2]
- Venjakob, O. A noncommutative Weierstrass preparation theorem and applications to Iwasawa theory. Journal für die reine und angewandte Mathematik (Crelles [3] *Journal*), 559, pp. 153–191 (2003) Funded by

Background photo: Timo Bobert, Max Greve